IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v48y2016i9p838-854.html
   My bibliography  Save this article

Risk-averse stochastic unit commitment with incomplete information

Author

Listed:
  • Ruiwei Jiang
  • Yongpei Guan
  • Jean-Paul Watson

Abstract

Due to the sustainable nature and stimulus plans from government, renewable energy (such as wind and solar) has been increasingly used in power systems. However, the intermittency of renewable energy creates challenges for power system operators to keep the systems reliable and cost-effective. In addition, information about renewable energy is usually incomplete. Instead of knowing the true probability distribution of the renewable energy course, only a set of historical data samples can be collected from the true (while ambiguous) distribution. In this article, we study two risk-averse stochastic unit commitment models with incomplete information: the first model being a chance-constrained unit commitment model and the second one a two-stage stochastic unit commitment model with recourse. Based on historical data on renewable energy, we construct a confidence set for the probability distribution of the renewable energy and propose data-driven stochastic unit commitment models to hedge against the incomplete nature of the information. Our models also ensure that, with a high probability, a large portion of renewable energy is utilized. Furthermore, we develop solution approaches to solve the models based on deriving strong valid inequalities and Benders’ decomposition algorithms. We show that the risk-averse behavior of both models decreases as more data samples are collected and eventually vanishes as the sample size goes to infinity. Finally, our case studies verify the effectiveness of our proposed models and solution approaches.

Suggested Citation

  • Ruiwei Jiang & Yongpei Guan & Jean-Paul Watson, 2016. "Risk-averse stochastic unit commitment with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 48(9), pages 838-854, September.
  • Handle: RePEc:taf:uiiexx:v:48:y:2016:i:9:p:838-854
    DOI: 10.1080/0740817X.2016.1167287
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2016.1167287
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2016.1167287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caunhye, Aakil M. & Cardin, Michel-Alexandre, 2018. "Towards more resilient integrated power grid capacity expansion: A robust optimization approach with operational flexibility," Energy Economics, Elsevier, vol. 72(C), pages 20-34.
    2. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    3. Erick Delage & Daniel Kuhn & Wolfram Wiesemann, 2019. "“Dice”-sion–Making Under Uncertainty: When Can a Random Decision Reduce Risk?," Management Science, INFORMS, vol. 65(7), pages 3282-3301, July.
    4. Ran Ji & Miguel A. Lejeune, 2021. "Data-driven distributionally robust chance-constrained optimization with Wasserstein metric," Journal of Global Optimization, Springer, vol. 79(4), pages 779-811, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:48:y:2016:i:9:p:838-854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.