IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v48y2016i6p541-554.html
   My bibliography  Save this article

Estimating Primary Demand for a Heterogeneous-Groups Product Category under Hierarchical Consumer Choice Model

Author

Listed:
  • Haengju Lee
  • Yongsoon Eun

Abstract

This paper discusses the estimation of primary demand (i.e., the true demand before the stockout-based substitution effect occurs) for a heterogeneous-groups product category that is sold in the department store setting, based on historical sales data, product availability, and market share information. For such products, a hierarchical consumer choice model can better represent purchasing behavior. This means that choice occurs on multiple levels: A consumer might choose a particular product group on the first level and purchase a product within that chosen group on the second level. Hence, in the present study, we used the nested multinomial logit (NMNL) choice model for the hierarchical choice and combined it with non-homogeneous Poisson arrivals over multiple periods. The expectation-maximization (EM) algorithm was applied to estimate the primary demand while treating the observed sales data as an incomplete observation of that demand. We considered the estimation problem as an optimization problem in terms of the inter-product-group heterogeneity, and this approach relieves the revenue management system of the computational burden of using a nonlinear optimization package. We subsequently tested the procedure with simulated data sets. The results confirmed that our algorithm estimates the demand parameters effectively for data sets with a high level of inter-product-group heterogeneity.

Suggested Citation

  • Haengju Lee & Yongsoon Eun, 2016. "Estimating Primary Demand for a Heterogeneous-Groups Product Category under Hierarchical Consumer Choice Model," IISE Transactions, Taylor & Francis Journals, vol. 48(6), pages 541-554, June.
  • Handle: RePEc:taf:uiiexx:v:48:y:2016:i:6:p:541-554
    DOI: 10.1080/0740817X.2015.1078524
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2015.1078524
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2015.1078524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillermo Gallego & Haengju Lee, 2020. "Callable products with dependent demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(3), pages 185-200, April.
    2. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    3. Zhen-Yu Chen & Zhi-Ping Fan & Minghe Sun, 2023. "Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 158-177, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:48:y:2016:i:6:p:541-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.