IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v48y2016i6p475-488.html
   My bibliography  Save this article

Axiomatic aggregation of incomplete rankings

Author

Listed:
  • Erick Moreno-Centeno
  • Adolfo R. Escobedo

Abstract

In many different applications of group decision-making, individual ranking agents or judges are able to rank only a small subset of all available candidates. However, as we argue in this article, the aggregation of these incomplete ordinal rankings into a group consensus has not been adequately addressed. We propose an axiomatic method to aggregate a set of incomplete rankings into a consensus ranking; the method is a generalization of an existing approach to aggregate complete rankings. More specifically, we introduce a set of natural axioms that must be satisfied by a distance between two incomplete rankings; prove the uniqueness and existence of a distance satisfying such axioms; formulate the aggregation of incomplete rankings as an optimization problem; propose and test a specific algorithm to solve a variation of this problem where the consensus ranking does not contain ties; and show that the consensus ranking obtained by our axiomatic approach is more intuitive than the consensus ranking obtained by other approaches.

Suggested Citation

  • Erick Moreno-Centeno & Adolfo R. Escobedo, 2016. "Axiomatic aggregation of incomplete rankings," IISE Transactions, Taylor & Francis Journals, vol. 48(6), pages 475-488, June.
  • Handle: RePEc:taf:uiiexx:v:48:y:2016:i:6:p:475-488
    DOI: 10.1080/0740817X.2015.1109737
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2015.1109737
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2015.1109737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Salas-Molina & Filippo Bistaffa & Juan A. Rodriguez-Aguilar, 2024. "A General Approach for Computing a Consensus in Group Decision Making That Integrates Multiple Ethical Principles," Papers 2401.07818, arXiv.org, revised Mar 2024.
    2. Akbari, Sina & Escobedo, Adolfo R., 2023. "Beyond kemeny rank aggregation: A parameterizable-penalty framework for robust ranking aggregation with ties," Omega, Elsevier, vol. 119(C).
    3. Francisco Pedroche & J. Alberto Conejero, 2020. "Corrected Evolutive Kendall’s τ Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists," Mathematics, MDPI, vol. 8(10), pages 1-30, October.
    4. Hiroki Nishimura & Efe A. Ok, 2022. "A class of dissimilarity semimetrics for preference relations," Papers 2203.04418, arXiv.org.
    5. Fu, Yelin & Lu, Yihe & Yu, Chen & Lai, Kin Keung, 2022. "Inter-country comparisons of energy system performance with the energy trilemma index: An ensemble ranking methodology based on the half-quadratic theory," Energy, Elsevier, vol. 261(PA).
    6. Yeawon Yoo & Adolfo R. Escobedo, 2021. "A New Binary Programming Formulation and Social Choice Property for Kemeny Rank Aggregation," Decision Analysis, INFORMS, vol. 18(4), pages 296-320, December.
    7. Li, Ying & Liu, Peide & Li, Gang, 2023. "An asymmetric cost consensus based failure mode and effect analysis method with personalized risk attitude information," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Yucheng Dong & Yao Li & Ying He & Xia Chen, 2021. "Preference–Approval Structures in Group Decision Making: Axiomatic Distance and Aggregation," Decision Analysis, INFORMS, vol. 18(4), pages 273-295, December.
    9. Salas-Molina, Francisco & Bistaffa, Filippo & Rodríguez-Aguilar, Juan A., 2023. "A general approach for computing a consensus in group decision making that integrates multiple ethical principles," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    10. Youssef Allouah & Rachid Guerraoui & L^e-Nguy^en Hoang & Oscar Villemaud, 2022. "Robust Sparse Voting," Papers 2202.08656, arXiv.org, revised Jan 2024.
    11. Yoo, Yeawon & Escobedo, Adolfo R. & Skolfield, J. Kyle, 2020. "A new correlation coefficient for comparing and aggregating non-strict and incomplete rankings," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1025-1041.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:48:y:2016:i:6:p:475-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.