IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v48y2016i1p57-65.html
   My bibliography  Save this article

Efficient control chart calibration by simulated stochastic approximation

Author

Listed:
  • Giovanna Capizzi
  • Guido Masarotto

Abstract

The accurate determination of control limits is crucial in statistical process control. The usual approach consists in computing the limits so that the in-control run-length distribution has some desired properties; for example, a prescribed mean. However, as a consequence of the increasing complexity of process data, the run-length of many control charts discussed in the recent literature can be studied only through simulation. Furthermore, in some scenarios, such as profile and autocorrelated data monitoring, the limits cannot be tabulated in advance, and when different charts are combined, the control limits depend on a multidimensional vector of parameters. In this article, we propose the use of stochastic approximation methods for control chart calibration and discuss enhancements for their implementation (e.g., the initialization of the algorithm, an adaptive choice of the gain, a suitable stopping rule for the iterative process, and the advantages of using multicore workstations). Examples are used to show that simulated stochastic approximation provides a reliable and fully automatic approach for computing the control limits in complex applications. An R package implementing the algorithm is available in the supplemental materials.

Suggested Citation

  • Giovanna Capizzi & Guido Masarotto, 2016. "Efficient control chart calibration by simulated stochastic approximation," IISE Transactions, Taylor & Francis Journals, vol. 48(1), pages 57-65, January.
  • Handle: RePEc:taf:uiiexx:v:48:y:2016:i:1:p:57-65
    DOI: 10.1080/0740817X.2015.1055392
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2015.1055392
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2015.1055392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Zhi & Mukherjee, Amitava & Liu, Yanchun & Zhang, Jiujun, 2019. "Optimizing joint location-scale monitoring – An adaptive distribution-free approach with minimal loss of information," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1019-1036.
    2. Weiß, Christian H. & Steuer, Detlef & Jentsch, Carsten & Testik, Murat Caner, 2018. "Guaranteed conditional ARL performance in the presence of autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 367-379.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:48:y:2016:i:1:p:57-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.