IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v47y2015i3p203-214.html
   My bibliography  Save this article

Ensemble modeling for data fusion in manufacturing process scale-up

Author

Listed:
  • Ran Jin
  • Xinwei Deng

Abstract

In modern manufacturing process scale-up, design of experiments is widely used to identify optimal process settings, followed by production runs to validate these process settings. Both experimental data and observational data are collected in the manufacturing process. However, current methodologies often use a single type of data to model the process. This work presents an innovative method to efficiently model a manufacturing process by integrating the two types of data. An ensemble modeling strategy is proposed that utilizes the constrained likelihood approach, where the constraints incorporate the sequential nature and inherent features of the two types of data. It therefore achieves better estimation and prediction than conventional methods. Simulations and a case study in wafer manufacturing are provided to illustrate the merits of the proposed method.

Suggested Citation

  • Ran Jin & Xinwei Deng, 2015. "Ensemble modeling for data fusion in manufacturing process scale-up," IISE Transactions, Taylor & Francis Journals, vol. 47(3), pages 203-214, March.
  • Handle: RePEc:taf:uiiexx:v:47:y:2015:i:3:p:203-214
    DOI: 10.1080/0740817X.2014.916580
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2014.916580
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2014.916580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Luo & Hongyue Sun & Qingyun Ping & Ran Jin & Zhen He, 2016. "A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects," Energies, MDPI, vol. 9(2), pages 1-27, February.
    2. SungKu Kang & Ran Jin & Xinwei Deng & Ron S. Kenett, 2023. "Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 415-428, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:47:y:2015:i:3:p:203-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.