Author
Listed:
- Amit Shinde
- Anshuman Sahu
- Daniel Apley
- George Runger
Abstract
Manufacturing industries collect massive amounts of multivariate measurement through automated inspection processes. Noisy measurements and high-dimensional, irrelevant features make it difficult to identify useful patterns in the data. Principal component analysis provides linear summaries of datasets with fewer latent variables. Kernel Principal Component Analysis (KPCA), however, identifies nonlinear patterns. One challenge in KPCA is to inverse map the denoised signal from a high-dimensional feature space into its preimage in input space to visualize the nonlinear variation sources. However, such an inverse map is not always defined. This article provides a new meta-method applicable to any KPCA algorithm to approximate the preimage. It improves upon previous work where a strong assumption was the availability of noise-free training data. This is problematic for applications such as manufacturing variation analysis. To attenuate noise in kernel subspace estimation the final preimage is estimated as the average from bagged samples drawn from the original dataset. The improvement is most pronounced when the parameters differ from those that minimize the error rate. Consequently, the proposed approach improves the robustness of any base KPCA algorithm. The usefulness of the proposed method is demonstrated by analyzing a classic handwritten digit dataset and a face dataset. Significant improvement over the existing methods is observed.
Suggested Citation
Amit Shinde & Anshuman Sahu & Daniel Apley & George Runger, 2014.
"Preimages for variation patterns from kernel PCA and bagging,"
IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 429-456.
Handle:
RePEc:taf:uiiexx:v:46:y:2014:i:5:p:429-456
DOI: 10.1080/0740817X.2013.849836
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:46:y:2014:i:5:p:429-456. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.