IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v45y2013i7p699-715.html
   My bibliography  Save this article

Simulation-based optimization over discrete sets with noisy constraints

Author

Listed:
  • Yao Luo
  • Eunji Lim

Abstract

This article considers a constrained optimization problem over a discrete set where noise-corrupted observations of the objective and constraints are available. The problem is challenging because the feasibility of a solution cannot be known for certain, due to the noisy measurements of the constraints. To tackle this issue, a method is proposed that converts constrained optimization into the unconstrained optimization problem of finding a saddle point of the Lagrangian. The method applies stochastic approximation to the Lagrangian in search of the saddle point. The proposed method is shown to converge, under suitable conditions, to the optimal solution almost surely as the number of iterations grows. The effectiveness of the proposed method is demonstrated numerically in three settings: (i) inventory control in a periodic review system; (ii) staffing in a call center; and (iii) staffing in an emergency room.

Suggested Citation

  • Yao Luo & Eunji Lim, 2013. "Simulation-based optimization over discrete sets with noisy constraints," IISE Transactions, Taylor & Francis Journals, vol. 45(7), pages 699-715.
  • Handle: RePEc:taf:uiiexx:v:45:y:2013:i:7:p:699-715
    DOI: 10.1080/0740817X.2012.733580
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2012.733580
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2012.733580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuljin Park & Seong-Hee Kim, 2015. "Penalty Function with Memory for Discrete Optimization via Simulation with Stochastic Constraints," Operations Research, INFORMS, vol. 63(5), pages 1195-1212, October.
    2. Weiwei Chen & Siyang Gao & Wenjie Chen & Jianzhong Du, 2023. "Optimizing resource allocation in service systems via simulation: A Bayesian formulation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 65-81, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:45:y:2013:i:7:p:699-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.