Author
Listed:
- Marcus Perry
- Jeffrey Kharoufeh
- Shashank Shekhar
- Jiazhao Cai
- M. Shankar
Abstract
Endowing conventional microcrystalline materials with nanometer-scale grains at the surfaces can offer enhanced mechanical properties, including improved wear, fatigue, and friction properties, while simultaneously enabling useful functionalizations with regard to biocompatibility, osseointegration, electrochemical performance, etc. To inherit such multifunctional properties from the surface nanograined state, existing approaches often use coatings that are created through an array of secondary processing techniques (e.g., physical or chemical vapor deposition, surface mechanical attrition treatment, etc.). Obviating the need for such surface processing, recent empirical evidence has demonstrated the introduction of integral surface nanograin structures on bulk materials as a result of severe plastic deformation during machining-based processes. Building on these observations, if empirically driven, process–structure mappings can be developed, it may be possible to engineer enhanced nanoscale surface microstructures directly using machining processes while simultaneously incorporating them within existing computer-numeric-controlled manufacturing systems. Toward this end, this article provides a statistical characterization of nanograined metals created by severe plastic deformation in machining-based processes that maps machining conditions to the resulting microstructure, namely, the mean grain size. A specialized designed experiments approach is used to hypothesize and test a linear mixed-effects model of two important machining parameters. Unlike standard analysis approaches, the statistical dependence between subsets of experimental grain size observations is accounted for and it is shown that ignoring this inherent dependence can yield misleading results for the mean response function. The statistical model is applied to pure copper specimens to identify the factors that most significantly contribute to variability in the mean grain size and is shown to accurately predict the mean grain size under a few scenarios.
Suggested Citation
Marcus Perry & Jeffrey Kharoufeh & Shashank Shekhar & Jiazhao Cai & M. Shankar, 2012.
"Statistical characterization of nanostructured materials from severe plastic deformation in machining,"
IISE Transactions, Taylor & Francis Journals, vol. 44(7), pages 534-550.
Handle:
RePEc:taf:uiiexx:v:44:y:2012:i:7:p:534-550
DOI: 10.1080/0740817X.2011.596509
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:44:y:2012:i:7:p:534-550. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.