IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v43y2011i9p661-675.html
   My bibliography  Save this article

A holistic method for reliability performance assessment and critical components detection in complex networks

Author

Listed:
  • Chi Zhang
  • José Ramirez-Marquez
  • Claudio Sanseverino

Abstract

Many infrastructures are now considered to be critical for both the economic development and general functioning of modern societies. Thus, understanding their performance is important as a basis to develop intelligent and cost-effective ways to protect these networks. In this article, a critical infrastructure is modeled as a complex network for which a new metric is defined to understand its reliability. This metric called reliability Π describes the average reliability between every pair of nodes in a complex network. As such, it is related to the two-terminal reliability concept in the traditional network context. Furthermore, in an effort to identify the most critical components that affect reliability Π, a multi-objective optimization problem, known as the critical component detection problem, is introduced. The solution to this problem provides two important insights about the behavior of a complex network: (i) an approximation to the set of optimal solutions that identifies the most critical components; and (ii) a quantitative assessment of how these failures affect the complete complex network.

Suggested Citation

  • Chi Zhang & José Ramirez-Marquez & Claudio Sanseverino, 2011. "A holistic method for reliability performance assessment and critical components detection in complex networks," IISE Transactions, Taylor & Francis Journals, vol. 43(9), pages 661-675.
  • Handle: RePEc:taf:uiiexx:v:43:y:2011:i:9:p:661-675
    DOI: 10.1080/0740817X.2010.546387
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2010.546387
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2010.546387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    2. Lu, Lu & Xu, Zhengguo & Wang, Wenhai & Sun, Youxian, 2013. "A new fault detection method for computer networks," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 45-51.
    3. Guozhen Xiong & Chi Zhang & Fei Zhou, 2017. "A robust reliability redundancy allocation problem under abnormal external failures guided by a new importance measure," Journal of Risk and Reliability, , vol. 231(2), pages 180-199, April.
    4. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    5. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    6. Zhu, Huaxing & Zhang, Chi, 2019. "Expanding a complex networked system for enhancing its reliability evaluated by a new efficient approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 205-220.
    7. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    8. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    9. Hiba Baroud & Jose E. Ramirez‐Marquez & Kash Barker & Claudio M. Rocco, 2014. "Stochastic Measures of Network Resilience: Applications to Waterway Commodity Flows," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1317-1335, July.
    10. Barker, Kash & Ramirez-Marquez, Jose Emmanuel & Rocco, Claudio M., 2013. "Resilience-based network component importance measures," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 89-97.
    11. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    12. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    13. Li, Yapeng & Qiao, Shun & Deng, Ye & Wu, Jun, 2019. "Stackelberg game in critical infrastructures from a network science perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 705-714.
    14. Lee, Joohyun & Kwak, Jaewook & Lee, Hyang-Won & Shroff, Ness B., 2018. "Finding minimum node separators: A Markov chain Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 225-235.
    15. Li, Yulong & Lin, Jie & Zhang, Chi & Zhu, Huaxing & Zeng, Saixing & Sun, Chengshaung, 2022. "Joint optimization of structure and protection of interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:43:y:2011:i:9:p:661-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.