IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v43y2011i7p471-482.html
   My bibliography  Save this article

A cautious approach to robust design with model parameter uncertainty

Author

Listed:
  • Daniel Apley
  • Jeongbae Kim

Abstract

Industrial robust design methods rely on empirical process models that relate an output response variable to a set of controllable input variables and a set of uncontrollable noise variables. However, when determining the input settings that minimize output variability, model uncertainty is typically neglected. Using a Bayesian problem formulation similar to what has been termed cautious control in the adaptive feedback control literature, this article develops a cautious robust design approach that takes model parameter uncertainty into account via the posterior (given the experimental data) parameter covariance. A tractable and interpretable expression for the posterior response variance and mean square error is derived that is well suited for numerical optimization and that also provides insight into the impact of parameter uncertainty on the robust design objective. The approach is cautious in the sense that as parameter uncertainty increases, the input settings are often chosen closer to the center of the experimental design region or, more generally, in a manner that mitigates the adverse effects of parameter uncertainty. A brief discussion on an extension of the approach to consider model structure uncertainty is presented.

Suggested Citation

  • Daniel Apley & Jeongbae Kim, 2011. "A cautious approach to robust design with model parameter uncertainty," IISE Transactions, Taylor & Francis Journals, vol. 43(7), pages 471-482.
  • Handle: RePEc:taf:uiiexx:v:43:y:2011:i:7:p:471-482
    DOI: 10.1080/0740817X.2010.532854
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2010.532854
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2010.532854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linhan Ouyang & Yizhong Ma & Jianxiong Chen & Zhigang Zeng & Yiliu Tu, 2016. "Robust optimisation of Nd: YLF laser beam micro-drilling process using Bayesian probabilistic approach," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6644-6659, November.
    2. Ouyang, Linhan & Ma, Yizhong & Wang, Jianjun & Tu, Yiliu, 2017. "A new loss function for multi-response optimization with model parameter uncertainty and implementation errors," European Journal of Operational Research, Elsevier, vol. 258(2), pages 552-563.
    3. Wang, Jianjun & Ma, Yizhong & Ouyang, Linhan & Tu, Yiliu, 2016. "A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability," European Journal of Operational Research, Elsevier, vol. 249(1), pages 231-237.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:43:y:2011:i:7:p:471-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.