IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v43y2011i2p129-142.html
   My bibliography  Save this article

Approximate dynamic programming for dynamic capacity allocation with multiple priority levels

Author

Listed:
  • Alexander Erdelyi
  • Huseyin Topaloglu

Abstract

This article considers a quite general dynamic capacity allocation problem. There is a fixed amount of daily processing capacity. On each day, jobs of different priorities arrive randomly and a decision has to made about which jobs should be scheduled on which days. Waiting jobs incur a holding cost that is a function of their priority levels. The objective is to minimize the total expected cost over a finite planning horizon. The problem is formulated as a dynamic program, but this formulation is computationally difficult as it involves a high-dimensional state vector. To address this difficulty, an approximate dynamic programming approach is used that decomposes the dynamic programming formulation by the different days in the planning horizon to construct separable approximations to the value functions. Value function approximations are used for two purposes. First, it is shown that the value function approximations can be used to obtain a lower bound on the optimal total expected cost. Second, the value function approximations can be used to make the job scheduling decisions over time. Computational experiments indicate that the job scheduling decisions made by the proposed approach perform significantly better than a variety of benchmark strategies.

Suggested Citation

  • Alexander Erdelyi & Huseyin Topaloglu, 2011. "Approximate dynamic programming for dynamic capacity allocation with multiple priority levels," IISE Transactions, Taylor & Francis Journals, vol. 43(2), pages 129-142.
  • Handle: RePEc:taf:uiiexx:v:43:y:2011:i:2:p:129-142
    DOI: 10.1080/0740817X.2010.504690
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2010.504690
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2010.504690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingui Xie & Weifen Zhuang & Marcus Ang & Mabel C. Chou & Li Luo & David D. Yao, 2021. "Analytics for Hospital Resource Planning—Two Case Studies," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1863-1885, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:43:y:2011:i:2:p:129-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.