IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v43y2010i1p54-68.html
   My bibliography  Save this article

A matrix-T approach to the sequential design of optimization experiments

Author

Listed:
  • Enrique del Castillo
  • Eduardo Santiago

Abstract

A new approach to the sequential design of experiments for the rapid optimization of multiple response, multiple controllable factor processes is presented. The approach is Bayesian and is based on an approximation of the cost to go of the underlying dynamic programming formulation. The approximation is based on a matrix T posterior predictive density for the predicted responses over the length of the experimental horizon that allows the responses to be cross-correlated and/or correlated over time. The case of an unknown variance is addressed; the assumed models are linear in the parameters but can be nonlinear in the factors. It is shown that the proposed approach has dual-control features, initially probing the process to reduce the parameter uncertainties and eventually converging to the desired solution. The convergence of the proposed method is numerically studied and convergence conditions discussed. Performance comparisons are given with respect to a known-parameters controller, the efficient global optimization algorithm, popular in sequential optimization of deterministic engineering metamodels, and with respect to the classical use of response surface designs followed by an optimization step.

Suggested Citation

  • Enrique del Castillo & Eduardo Santiago, 2010. "A matrix-T approach to the sequential design of optimization experiments," IISE Transactions, Taylor & Francis Journals, vol. 43(1), pages 54-68.
  • Handle: RePEc:taf:uiiexx:v:43:y:2010:i:1:p:54-68
    DOI: 10.1080/0740817X.2010.504687
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2010.504687
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2010.504687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jack Kleijnen & Wim Beers & Inneke Nieuwenhuyse, 2012. "Expected improvement in efficient global optimization through bootstrapped kriging," Journal of Global Optimization, Springer, vol. 54(1), pages 59-73, September.
    2. Kleijnen, Jack P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2011. "Expected Improvement in Efficient Global Optimization Through Bootstrapped Kriging - Replaces CentER DP 2010-62," Other publications TiSEM d3b15c46-27c4-493e-8c53-9, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:43:y:2010:i:1:p:54-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.