IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v42y2010i8p539-552.html
   My bibliography  Save this article

Evolutionary optimization technique for multi-state two-terminal reliability allocation in multi-objective problems

Author

Listed:
  • José Ramirez-Marquez
  • Claudio Rocco

Abstract

This article presents a newly developed evolutionary algorithm for solving multi-objective optimization models for the design of multi-state two-terminal networks. It is assumed that for each network component, a known set of functionally equivalent component types (with different performance specifications) can be used to provide redundancy. Furthermore, the reliability behavior of the network and its components can have a range of states varying from perfect functioning to complete failure; that is, a multi-state behavior. Thus, the new algorithm allows solving the multi-objective optimization case of the reliability allocation problem for general multi-state two-terminal networks. The optimization routine is based on three major steps that use an evolutionary optimization approach and Monte Carlo simulation to generate a Pareto optimal string of probabilistic solutions to these problems. Examples for different multi-state two-terminal networks are used throughout the article to illustrate the approach. The results obtained for test cases are compared with other proposed methods to show the accuracy of the algorithm in generating approximate Pareto optimal sets for problems with a large solution space.

Suggested Citation

  • José Ramirez-Marquez & Claudio Rocco, 2010. "Evolutionary optimization technique for multi-state two-terminal reliability allocation in multi-objective problems," IISE Transactions, Taylor & Francis Journals, vol. 42(8), pages 539-552.
  • Handle: RePEc:taf:uiiexx:v:42:y:2010:i:8:p:539-552
    DOI: 10.1080/07408170903459984
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07408170903459984
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07408170903459984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    2. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Levitin, Gregory, 2011. "Optimal network protection against diverse interdictor strategies," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 374-382.
    3. Lin, Yi-Kuei & Huang, Ding-Hsiang, 2020. "Reliability analysis for a hybrid flow shop with due date consideration," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Rocco, Claudio M. & Moronta, José & Ramirez-Marquez, José E. & Barker, Kash, 2017. "Effects of multi-state links in network community detection," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 46-56.
    5. Guozhen Xiong & Chi Zhang & Fei Zhou, 2017. "A robust reliability redundancy allocation problem under abnormal external failures guided by a new importance measure," Journal of Risk and Reliability, , vol. 231(2), pages 180-199, April.
    6. Li, Yulong & Lin, Jie & Zhang, Chi & Zhu, Huaxing & Zeng, Saixing & Sun, Chengshaung, 2022. "Joint optimization of structure and protection of interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    7. Zhu, Huaxing & Zhang, Chi, 2019. "Expanding a complex networked system for enhancing its reliability evaluated by a new efficient approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 205-220.
    8. Li, Y.F. & Peng, R., 2014. "Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 47-57.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:42:y:2010:i:8:p:539-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.