IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v42y2010i4p288-303.html
   My bibliography  Save this article

A classification procedure for highly imbalanced class sizes

Author

Listed:
  • Eunshin Byon
  • Abhishek Shrivastava
  • Yu Ding

Abstract

This article develops an effective procedure for handling two-class classification problems with highly imbalanced class sizes. In many imbalanced two-class problems, the majority class represents “normal” cases, while the minority class represents “abnormal” cases, detection of which is critical to decision making. When the class sizes are highly imbalanced, conventional classification methods tend to strongly favor the majority class, resulting in very low or even no detection of the minority class. The research objective of this article is to devise a systematic procedure to substantially improve the power of detecting the minority class so that the resulting procedure can help screen the original data set and select a much smaller subset for further investigation. A procedure is developed that is based on ensemble classifiers, where each classifier is constructed from a resized training set with reduced dimension space. In addition, how to find the best values of the decision variables in the proposed classification procedure is specified. The proposed method is compared to a set of off-the-shelf classification methods using two real data sets. The prediction results of the proposed method show remarkable improvements over the other methods. The proposed method can detect about 75% of the minority class units, while the other methods turn out much lower detection rates.

Suggested Citation

  • Eunshin Byon & Abhishek Shrivastava & Yu Ding, 2010. "A classification procedure for highly imbalanced class sizes," IISE Transactions, Taylor & Francis Journals, vol. 42(4), pages 288-303.
  • Handle: RePEc:taf:uiiexx:v:42:y:2010:i:4:p:288-303
    DOI: 10.1080/07408170903228967
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07408170903228967
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07408170903228967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheoljoon Jeong & Ziang Xu & Albert S. Berahas & Eunshin Byon & Kristen Cetin, 2023. "Multiblock Parameter Calibration in Computer Models," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 116-137, October.
    2. Amal N. El-Sari & Reda A. El-Khoribi, 2013. "Quality Assessment of 12-Lead ECG in Body Sensor Network," International Journal of Sciences, Office ijSciences, vol. 2(10), pages 100-105, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:42:y:2010:i:4:p:288-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.