IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v41y2009i6p483-497.html
   My bibliography  Save this article

Staffing multi-skill call centers via search methods and a performance approximation

Author

Listed:
  • Athanassios Avramidis
  • Wyean Chan
  • Pierre L'Ecuyer

Abstract

A multi-skill staffing problem in a call center where the agent skill sets are exogenous and the call routing policy has well-specified features of overflow between different agent types is addressed. Constraints are imposed on the service level for each call class, defined here as the steady-state fraction of calls served within a given time threshold, excluded. An approximation of these service levels is developed that allows an arbitrary overflow mechanism and customer abandonment. A two-stage heuristic that finds good solutions to mathematical programs with such constraints is developed. The first stage uses search methods supported by the approximation. Because service level approximation errors may be substantial, the solution is adjusted in a second stage in which performance is estimated by simulation. Realistic problems of varying size and routing policy are solved. The proposed approach is shown to be competitive with (and often better than) previously available methods.[Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for the following free supplemental resource: Appendix]

Suggested Citation

  • Athanassios Avramidis & Wyean Chan & Pierre L'Ecuyer, 2009. "Staffing multi-skill call centers via search methods and a performance approximation," IISE Transactions, Taylor & Francis Journals, vol. 41(6), pages 483-497.
  • Handle: RePEc:taf:uiiexx:v:41:y:2009:i:6:p:483-497
    DOI: 10.1080/07408170802322986
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07408170802322986
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07408170802322986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    2. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    3. Armann Ingolfsson & Ling Tang, 2012. "Efficient and Reliable Computation of Birth-Death Process Performance Measures," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 29-41, February.
    4. Avramidis, Athanassios N. & Chan, Wyean & Gendreau, Michel & L'Ecuyer, Pierre & Pisacane, Ornella, 2010. "Optimizing daily agent scheduling in a multiskill call center," European Journal of Operational Research, Elsevier, vol. 200(3), pages 822-832, February.
    5. Dietz, Dennis C., 2011. "Practical scheduling for call center operations," Omega, Elsevier, vol. 39(5), pages 550-557, October.
    6. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    7. Itai Gurvich & Ohad Perry, 2012. "Overflow Networks: Approximations and Implications to Call Center Outsourcing," Operations Research, INFORMS, vol. 60(4), pages 996-1009, August.
    8. Ta, Thuy Anh & Chan, Wyean & Bastin, Fabian & L’Ecuyer, Pierre, 2021. "A simulation-based decomposition approach for two-stage staffing optimization in call centers under arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 293(3), pages 966-979.
    9. Jaime Miranda & Pablo A. Rey & Antoine Sauré & Richard Weber, 2018. "Metro Uses a Simulation-Optimization Approach to Improve Fare-Collection Shift Scheduling," Interfaces, INFORMS, vol. 48(6), pages 529-542, November.
    10. Örmeci, E. Lerzan & Salman, F. Sibel & Yücel, Eda, 2014. "Staff rostering in call centers providing employee transportation," Omega, Elsevier, vol. 43(C), pages 41-53.
    11. Gang Li & Joy M. Field & Hongxun Jiang & Tian He & Youming Pang, 2019. "Decision Models for Workforce and Technology Planning in Services," Papers 1909.12829, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:41:y:2009:i:6:p:483-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.