IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v9y2005i2p85-100.html
   My bibliography  Save this article

Lundberg-Type Bounds for the Joint Distribution of Surplus Immediately Before and at Ruin Under the Sparre Andersen Model

Author

Listed:
  • Andrew Ng
  • Hailiang Yang

Abstract

In this paper we consider the Sparre Andersen insurance risk model. Three cases are discussed: the ordinary renewal risk process, stationary renewal risk process, and s-delayed renewal risk process. In the first part of the paper we study the joint distribution of surplus immediately before and at ruin under the renewal insurance risk model. By constructing an exponential martingale, we obtain Lundberg-type upper bounds for the joint distribution. Consequently we obtain bounds for the distribution of the deficit at ruin and ruin probability. In the second part of the paper, we consider the special case of phase-type claims and rederive the closed-form expression for the distribution of the severity of ruin, obtained by Drekic et al. (2003, 2004). Finally, we present some numerical results to illustrate the tightness of the bounds obtained in this paper.

Suggested Citation

  • Andrew Ng & Hailiang Yang, 2005. "Lundberg-Type Bounds for the Joint Distribution of Surplus Immediately Before and at Ruin Under the Sparre Andersen Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 85-100.
  • Handle: RePEc:taf:uaajxx:v:9:y:2005:i:2:p:85-100
    DOI: 10.1080/10920277.2005.10596203
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2005.10596203
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2005.10596203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Jiandong, 2009. "A connection between the discounted and non-discounted expected penalty functions in the Sparre Andersen risk model," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 324-330, February.
    2. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    3. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:9:y:2005:i:2:p:85-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.