IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v7y2003i3p37-51.html
   My bibliography  Save this article

Geometric Brownian Motion Models for Assets and Liabilities: From Pension Funding to Optimal Dividends

Author

Listed:
  • Hans Gerber
  • Elias Shiu

Abstract

In this paper asset and liability values are modeled by geometric Brownian motions. In the first part of the paper we consider a pension plan sponsor with the funding objective that the pension asset value is to be within a band that is proportional to the pension liability value. Whenever the asset value is about to fall below the lower barrier or boundary of the band, the sponsor will provide sufficient funds to prevent this from happening. If, on the other hand, the asset value is about to exceed the upper barrier of the band, the assets are reduced by the potential overflow and returned to the sponsor. This paper calculates the expected present value of the payments to be made by the sponsor as well as that of the refunds to the sponsor. In particular we are interested in situations where these two expected values are equal. In the second part of the paper the refunds at the upper barrier are interpreted as the dividends paid to the shareholders of a company according to a barrier strategy. However, if the (modified) asset value ever falls to the liability value, which is the lower barrier, “ruin” takes place, and no more dividends can be paid. We derive an explicit expression for the expected discounted dividends before ruin. From this we find an explicit expression for the proportionality constant of the upper barrier that maximizes the expected discounted dividends. If the initial asset value is the optimal upper barrier, there is a particularly simple and intriguing expression for the expected discounted dividends, which can be interpreted as the present value of a deterministic perpetuity with exponentially growing payments.

Suggested Citation

  • Hans Gerber & Elias Shiu, 2003. "Geometric Brownian Motion Models for Assets and Liabilities: From Pension Funding to Optimal Dividends," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(3), pages 37-51.
  • Handle: RePEc:taf:uaajxx:v:7:y:2003:i:3:p:37-51
    DOI: 10.1080/10920277.2003.10596099
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2003.10596099
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2003.10596099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Beirlant & G. Claeskens & C. Croux & H. Degryse & H. Dewachter & G. Dhaene & J. Dhaene & I. Gijbels & M. Goovaerts & M. Hubert & F. Roodhooft & W. Schouten & M. Willekens, 2005. "Managing Uncertainty: Financial, Actuarial and Statistical Modeling," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(1), pages 23-48.
    2. Leung, Kwai Sun & Kwok, Yue Kuen & Leung, Seng Yuen, 2008. "Finite-time dividend-ruin models," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 154-162, February.
    3. Ko, Bangwon & Shiu, Elias S.W. & Wei, Li, 2010. "Pricing maturity guarantee with dynamic withdrawal benefit," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 216-223, October.
    4. Zhou, Ming & Yuen, Kam C., 2012. "Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle," Economic Modelling, Elsevier, vol. 29(2), pages 198-207.
    5. Theodoros M. Diasakos, 2011. "A Simple Characterization of Dynamic Completeness in Continuous Time," Carlo Alberto Notebooks 211, Collegio Carlo Alberto.
    6. Dassios, Angelos & Wu, Shanle, 2011. "Barrier strategies with Parisian delay," LSE Research Online Documents on Economics 32024, London School of Economics and Political Science, LSE Library.
    7. Benjamin Avanzi & Ping Chen & Lars Frederik Brandt Henriksen & Bernard Wong, 2022. "On the surplus management of funds with assets and liabilities in presence of solvency requirements," Papers 2203.05139, arXiv.org, revised Aug 2022.
    8. Meng, Hui & Siu, Tak Kuen, 2011. "On optimal reinsurance, dividend and reinvestment strategies," Economic Modelling, Elsevier, vol. 28(1-2), pages 211-218, January.
    9. Guan, Huiqi & Liang, Zongxia, 2014. "Viscosity solution and impulse control of the diffusion model with reinsurance and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 109-122.
    10. Kam C. Yuen & Yuhua Lu & Rong Wu, 2009. "The compound Poisson process perturbed by a diffusion with a threshold dividend strategy," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 73-93, January.
    11. Philipp Müller & Joël Wagner, 2017. "The Impact of Pension Funding Mechanisms on the Stability and Payoff from Swiss DC Pension Schemes: A Sensitivity Analysis," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 42(3), pages 423-452, July.
    12. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2009. "Spectral decomposition of optimal asset-liability management," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 710-724, March.
    13. Diasakos, Theodoros M, 2013. "Comparative Statics of Asset Prices: the effect of other assets' risk," SIRE Discussion Papers 2013-94, Scottish Institute for Research in Economics (SIRE).
    14. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    15. Erhan Bayraktar & Masahiko Egami, 2010. "A unified treatment of dividend payment problems under fixed cost and implementation delays," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 325-351, April.
    16. Kulenko, Natalie & Schmidli, Hanspeter, 2008. "Optimal dividend strategies in a Cramér-Lundberg model with capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 270-278, October.
    17. Ping Chen & Hailiang Yang, 2010. "Pension funding problem with regime‐switching geometric Brownian motion assets and liabilities," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 125-141, March.
    18. Meng, Hui & Siu, Tak Kuen & Yang, Hailiang, 2013. "Optimal dividends with debts and nonlinear insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 110-121.
    19. Benjamin Avanzi & Vincent Tu & Bernard Wong, 2016. "A Note on Realistic Dividends in Actuarial Surplus Models," Risks, MDPI, vol. 4(4), pages 1-9, October.
    20. Dassios, Angelos & Wu, Shanle, 2009. "On barrier strategy dividends with Parisian implementation delay for classical surplus processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 195-202, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:7:y:2003:i:3:p:37-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.