Author
Listed:
- Roxane Turcotte
- Jean-Philippe Boucher
Abstract
By generalizing traditional regression frameworks, generalized additive models for location, scale, and shape (GAMLSSs) allow parametric or semiparametric modeling of one or more parameters of distributions that are not members of the linear exponential family. Consequently, these GAMLSS approaches offer an interesting theoretical framework to allow the use of several potentially helpful distributions in actuarial science. GAMLSS theory is coupled with longitudinal approaches for counting data because these approaches are essential to predictive pricing models. Indeed, they are mainly known for modeling the dependence between the number of claims from the contracts of the same insured over time. Considering that the models’ cross-sectional counterparts have been successfully applied in actuarial work and the importance of longitudinal models, we show that the proposed approach allows one to quickly implement multivariate longitudinal models with nonparametric terms for ratemaking. This semiparametric modeling is illustrated using a dataset from a major insurance company in Canada. An analysis is then conducted on the improvement of predictive power that the use of historical data and nonparametric terms in the modeling allows. In addition, we found that the weight of past experience in bonus–malus predictive premiums analysis is reduced in comparison with a parametric model and that this method could help for continuous covariate segmentation. Our approach differs from previous studies because it does not use any simplifying assumptions as to the value of the a priori explanatory variables and because we have carried out a predictive pricing integrating nonparametric terms within the framework of the GAMLSS in an explicit way, which makes it possible to reproduce the same type of study using other distributions.
Suggested Citation
Roxane Turcotte & Jean-Philippe Boucher, 2024.
"GAMLSS for Longitudinal Multivariate Claim Count Models,"
North American Actuarial Journal, Taylor & Francis Journals, vol. 28(2), pages 337-360, April.
Handle:
RePEc:taf:uaajxx:v:28:y:2024:i:2:p:337-360
DOI: 10.1080/10920277.2023.2202707
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:28:y:2024:i:2:p:337-360. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.