IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v28y2024i2p285-319.html
   My bibliography  Save this article

Antidiscrimination Insurance Pricing: Regulations, Fairness Criteria, and Models

Author

Listed:
  • Xi Xin
  • Fei Huang

Abstract

On the issue of insurance discrimination, a grey area in regulation has resulted from the growing use of big data analytics by insurance companies: direct discrimination is prohibited, but indirect discrimination using proxies or more complex and opaque algorithms is not clearly specified or assessed. This phenomenon has recently attracted the attention of insurance regulators all over the world. Meanwhile, various fairness criteria have been proposed and flourished in the machine learning literature with the rapid growth of artificial intelligence (AI) in the past decade and have mostly focused on classification decisions. In this article, we introduce some fairness criteria that are potentially applicable to insurance pricing as a regression problem to the actuarial field, match them with different levels of potential and existing antidiscrimination regulations, and implement them into a series of existing and newly proposed antidiscrimination insurance pricing models, using both generalized linear models (GLMs) and Extreme Gradient Boosting (XGBoost). Our empirical analysis compares the outcome of different models via the fairness–accuracy trade-off and shows their impact on adverse selection and solidarity.

Suggested Citation

  • Xi Xin & Fei Huang, 2024. "Antidiscrimination Insurance Pricing: Regulations, Fairness Criteria, and Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 28(2), pages 285-319, April.
  • Handle: RePEc:taf:uaajxx:v:28:y:2024:i:2:p:285-319
    DOI: 10.1080/10920277.2023.2190528
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2023.2190528
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2023.2190528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:28:y:2024:i:2:p:285-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.