IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v27y2023i3p444-471.html
   My bibliography  Save this article

Ensemble Economic Scenario Generators: Unity Makes Strength

Author

Listed:
  • Jean-François Bégin

Abstract

Over the last 40 years, various frameworks have been proposed to model economic and financial variables relevant to actuaries. These models are helpful, but searching for a unique model that gives optimal forecasting performance can be frustrating and ultimately futile. This study therefore investigates whether we can create better, more reliable economic scenario generators by combining them. We first consider eight prominent economic scenario generators and apply Bayesian estimation techniques to them, thus allowing us to account for parameter uncertainty. We then rely on predictive distribution stacking to obtain optimal model weights that prescribe how the models should be averaged. The weights are constructed in a leave-future-out fashion to build truly out-of-sample forecasts. An extensive empirical study based on three economies—the United States, Canada, and the United Kingdom—and data from 1992 to 2021 is performed. We find that the optimal weights change over time and differ from one economy to another. The out-of-sample behavior of the ensemble model compares favorably to the other eight models: the ensemble model’s performance is substantially better than that of the worse models and comparable to that of the better models. Creating ensembles is thus beneficial from an out-of-sample perspective because it allows for robust and reasonable forecasts.

Suggested Citation

  • Jean-François Bégin, 2023. "Ensemble Economic Scenario Generators: Unity Makes Strength," North American Actuarial Journal, Taylor & Francis Journals, vol. 27(3), pages 444-471, July.
  • Handle: RePEc:taf:uaajxx:v:27:y:2023:i:3:p:444-471
    DOI: 10.1080/10920277.2022.2100425
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2022.2100425
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2022.2100425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:27:y:2023:i:3:p:444-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.