IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v25y2021is1ps235-s254.html
   My bibliography  Save this article

A Bayesian Approach to Modeling and Projecting Cohort Effects

Author

Listed:
  • Andrew Hunt
  • David Blake

Abstract

One of the key motivations in the construction of ever more sophisticated mortality models was the realization of the importance of “cohort effects” in the historical data. However, these are often difficult to estimate robustly, due to the identifiability issues present in age/period/cohort mortality models, and exhibit spurious features for the most recent years of birth, for which we have little data. These can cause problems when we project the model into the future. In this study, we show how to ensure that projected mortality rates from the model are independent of the arbitrary identifiability constraints needed to identify the cohort parameters. We then go on to develop a Bayesian approach for projecting the cohort parameters that allows fully for uncertainty in the recent parameters due to the lack of information for these years of birth, which leads to more reasonable projections of mortality rates in future.

Suggested Citation

  • Andrew Hunt & David Blake, 2021. "A Bayesian Approach to Modeling and Projecting Cohort Effects," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(S1), pages 235-254, February.
  • Handle: RePEc:taf:uaajxx:v:25:y:2021:i:s1:p:s235-s254
    DOI: 10.1080/10920277.2019.1649157
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2019.1649157
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2019.1649157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:25:y:2021:i:s1:p:s235-s254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.