Author
Listed:
- Milton Boyd
- Brock Porth
- Lysa Porth
- Daniel Turenne
Abstract
Weather index insurance for crops is at the developmental stage, however, this type of insurance is particularly susceptible to the problem of spatial basis risk. Spatial basis risk occurs when the weather observed at weather stations does not match the weather experienced on the farmer’s property, causing improper indemnities to be paid to the farmer. However, spatial basis risk may be reduced through the use of averaging and spatial interpolation techniques, such as inverse distance weighting and kriging. These techniques make it possible to incorporate multiple weather stations in the estimation process rather than using only the single closest station, potentially resulting in more accurate estimations and thereby reducing spatial basis risk. Therefore, the objective of this study is to examine the extent to which the choice of spatial interpolation techniques can influence the amount of spatial basis risk in a weather-based insurance model. Using forage crops from the province of Ontario, Canada, as an example, a weather insurance index is developed based on cooling degree days. The weather index represents the heat stress that the crops receive over the growing season. This insurance index is used to determine to what extent spatial basis risk can be reduced by the insurer’s choice of spatial interpolation technique. Seven different interpolation methods are applied to temperature data from Ontario, and theoretical indemnities are calculated for forage producers across the province. By analyzing the correlation between the estimated indemnities and reported forage yields, the amount of spatial basis risk in each model is quantified. The results of this study highlight the importance of choosing an appropriate method based on the characteristics of the target region (and data). Operationally this is important because insurers typically apply the same interpolation methods across an entire region. While one finding of this research may suggest that governments and/or insurance companies may wish to invest in additional weather stations to improve the accuracy of the interpolation method and index, this may not be feasible in practice. Given this, future research may consider utilizing satellite-based remote sensing weather estimates to augment the weather station data and reduce basis risk.
Suggested Citation
Milton Boyd & Brock Porth & Lysa Porth & Daniel Turenne, 2019.
"The Impact of Spatial Interpolation Techniques on Spatial Basis Risk for Weather Insurance: An Application to Forage Crops,"
North American Actuarial Journal, Taylor & Francis Journals, vol. 23(3), pages 412-433, July.
Handle:
RePEc:taf:uaajxx:v:23:y:2019:i:3:p:412-433
DOI: 10.1080/10920277.2019.1566074
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Tappi, Marco & Carucci, Federica & Gatta, Giuseppe & Giuliani, Marcella Michela & Lamonaca, Emilia & Santeramo, Fabio Gaetano, 2023.
"Temporal and design approaches and yield-weather relationships,"
MPRA Paper
117488, University Library of Munich, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:23:y:2019:i:3:p:412-433. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.