IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v22y2018i3p341-364.html
   My bibliography  Save this article

Optimal Risk Transfer: A Numerical Optimization Approach

Author

Listed:
  • Alexandru V. Asimit
  • Tao Gao
  • Junlei Hu
  • Eun-Seok Kim

Abstract

Capital efficiency and asset/liability management are part of the Enterprise Risk Management Process of any insurance/reinsurance conglomerate and serve as quantitative methods to fulfill the strategic planning within an insurance organization. A considerable amount of work has been done in this ample research field, but invariably one of the last questions is whether or not, numerically, the method is practically implementable, which is our main interest. The numerical issues are dependent on the traits of the optimization problem, and therefore we plan to focus on the optimal reinsurance design, which has been a very dynamic topic in the last decade. The existing literature is focused on finding closed-form solutions that are usually possible when economic, solvency, and other constraints are not included in the model. Including these constraints, the optimal contract can be found only numerically. The efficiency of these methods is extremely good for some well-behaved convex problems, such as Second-Order Conic Problems. Specific numerical solutions are provided to better explain the advantages of appropriate numerical optimization methods chosen to solve various risk transfer problems. The stability issues are also investigated together with a case study performed for an insurance group that aims capital efficiency across the entire organization.

Suggested Citation

  • Alexandru V. Asimit & Tao Gao & Junlei Hu & Eun-Seok Kim, 2018. "Optimal Risk Transfer: A Numerical Optimization Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(3), pages 341-364, July.
  • Handle: RePEc:taf:uaajxx:v:22:y:2018:i:3:p:341-364
    DOI: 10.1080/10920277.2017.1421472
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2017.1421472
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2017.1421472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guerra, M. & de Moura, A.B., 2021. "Reinsurance of multiple risks with generic dependence structures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 547-571.
    2. Asimit, Alexandru V. & Cheung, Ka Chun & Chong, Wing Fung & Hu, Junlei, 2020. "Pareto-optimal insurance contracts with premium budget and minimum charge constraints," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 17-27.
    3. Fan, Qi & Tan, Ken Seng & Zhang, Jinggong, 2023. "Empirical tail risk management with model-based annealing random search," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 106-124.
    4. Asimit, Alexandru V. & Hu, Junlei & Xie, Yuantao, 2019. "Optimal robust insurance with a finite uncertainty set," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 67-81.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:22:y:2018:i:3:p:341-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.