Author
Listed:
- Min-Ming Wen
- H. J. Abraham Lin
- Patricia H. Born
- Charles Yang
- Chun Wang
Abstract
This study proposes and demonstrates a dynamic factor model that can be empirically carried out by the utilization of a factor-augmented autoregressive technique to explain and forecast the time-varying patterns of cash flows of insurance companies in the United States. A principal component approach is employed in the Factor-Augmented Autoregressive Model (FAARM) to capture the augmented factors that are to be utilized for forecasting. We describe the cash flow statistical model by a dimension-reduction technique that can depict the dynamic patterns of the cash flows of insurance firms and then measure the FAARM model. Results from the first step (principal component analysis) help capture the macroeconomic variables and the variables pertaining to insurance companies' cash flows, namely, cash flows from investment, underwriting, and risk management activities. Results from the second step offer evidence supporting that the FAARM improves the out-of-sample forecasting accuracy assessed by a forecasted root-mean-squared error (FRMSE). This article presents a set of feasible FAAR models from which an insurance firm can choose one that can be a better fit to the firm corresponding to its specific firm characteristics, such as firm size. Consequently, the chosen FAARM(s) can improve the accuracy of cash flow forecasting and thus can help insurers to manage risk via cash-flow–matching techniques.
Suggested Citation
Min-Ming Wen & H. J. Abraham Lin & Patricia H. Born & Charles Yang & Chun Wang, 2018.
"Cash Flow Risk Management in the Property/Liability Insurance Industry: A Dynamic Factor Modeling Approach,"
North American Actuarial Journal, Taylor & Francis Journals, vol. 22(2), pages 309-322, April.
Handle:
RePEc:taf:uaajxx:v:22:y:2018:i:2:p:309-322
DOI: 10.1080/10920277.2018.1423994
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:22:y:2018:i:2:p:309-322. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.