IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v22y2018i1p22-39.html
   My bibliography  Save this article

Claims Reserving with a Stochastic Vector Projection

Author

Listed:
  • Luís Portugal
  • Athanasios A. Pantelous
  • Hirbod Assa

Abstract

In the last three decades, a variety of stochastic reserving models have been proposed in the general insurance literature mainly using (or reproducing) the well-known Chain-Ladder claims-reserving estimates. In practice, when the data do not satisfy the Chain-Ladder assumptions, high prediction errors might occur. Thus, in this article, a combined methodology is proposed based on the stochastic vector projection method and uses the regression through the origin approach of Murphy, but with heteroscedastic errors instead, and different from those that used by Mack. Furthermore, the Mack distribution-free model appears to have higher prediction errors when compared with the proposed one, particularly, for data sets with increasing (regular) trends. Finally, three empirical examples with irregular and regular data sets illustrate the theoretical findings, and the concepts of best estimate and risk margin are reported.

Suggested Citation

  • Luís Portugal & Athanasios A. Pantelous & Hirbod Assa, 2018. "Claims Reserving with a Stochastic Vector Projection," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 22-39, January.
  • Handle: RePEc:taf:uaajxx:v:22:y:2018:i:1:p:22-39
    DOI: 10.1080/10920277.2017.1353429
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2017.1353429
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2017.1353429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lindholm, Mathias & Verrall, Richard, 2020. "Regression based reserving models and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 109-124.
    2. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:22:y:2018:i:1:p:22-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.