IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v21y2017i1p107-146.html
   My bibliography  Save this article

Model-Based and Nonparametric Approaches to Clustering for Data Compression in Actuarial Applications

Author

Listed:
  • Adrian O’Hagan
  • Colm Ferrari

Abstract

Clustering is used by actuaries in a data compression process to make massive or nested stochastic simulations practical to run. A large data set of assets or liabilities is partitioned into a user-defined number of clusters, each of which is compressed to a single representative policy. The representative policies can then simulate the behavior of the entire portfolio over a large range of stochastic scenarios. Such processes are becoming increasingly important in understanding product behavior and assessing reserving requirements in a big-data environment. This article proposes a variety of clustering techniques that can be used for this purpose. Initialization methods for performing clustering compression are also compared, including principal components, factor analysis, and segmentation. A variety of methods for choosing a cluster's representative policy is considered. A real data set comprising variable annuity policies, provided by Milliman, is used to test the proposed methods. It is found that the compressed data sets produced by the new methods, namely, model-based clustering, Ward's minimum variance hierarchical clustering, and k-medoids clustering, can replicate the behavior of the uncompressed (seriatim) data more accurately than those obtained by the existing Milliman method. This is verified within sample by examining location variable totals of the representative policies versus the uncompressed data at the five levels of compression of interest. More crucially it is also verified out of sample by comparing the distributions of the present values of several variables after 20 years across 1000 simulated scenarios based on the compressed and seriatim data, using Kolmogorov-Smirnov goodness-of-fit tests and weighted sums of squared differences.

Suggested Citation

  • Adrian O’Hagan & Colm Ferrari, 2017. "Model-Based and Nonparametric Approaches to Clustering for Data Compression in Actuarial Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(1), pages 107-146, January.
  • Handle: RePEc:taf:uaajxx:v:21:y:2017:i:1:p:107-146
    DOI: 10.1080/10920277.2016.1234398
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2016.1234398
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2016.1234398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas Bett & Juma Kasozi & Daniel Ruturwa, 2022. "Temporal Clustering of the Causes of Death for Mortality Modelling," Risks, MDPI, vol. 10(5), pages 1-34, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:21:y:2017:i:1:p:107-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.