IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v19y2015i1p24-40.html
   My bibliography  Save this article

CreditRisk Model with Dependent Risk Factors

Author

Listed:
  • Ruodu Wang
  • Liang Peng
  • Jingping Yang

Abstract

The CreditRisk+ model is widely used in industry for computing the loss of a credit portfolio. The standard CreditRisk+ model assumes independence among a set of common risk factors, a simplified assumption that leads to computational ease. In this article, we propose to model the common risk factors by a class of multivariate extreme copulas as a generalization of bivariate Fréchet copulas. Further we present a conditional compound Poisson model to approximate the credit portfolio and provide a cost-efficient recursive algorithm to calculate the loss distribution. The new model is more flexible than the standard model, with computational advantages compared to other dependence models of risk factors.

Suggested Citation

  • Ruodu Wang & Liang Peng & Jingping Yang, 2015. "CreditRisk Model with Dependent Risk Factors," North American Actuarial Journal, Taylor & Francis Journals, vol. 19(1), pages 24-40, January.
  • Handle: RePEc:taf:uaajxx:v:19:y:2015:i:1:p:24-40
    DOI: 10.1080/10920277.2014.976311
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2014.976311
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2014.976311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papalamprou, Konstantinos & Antoniou, Paschalis, 2019. "Estimation of capital requirements in downturn conditions via the CBV model: Evidence from the Greek banking sector," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    3. Dirk Tasche, 2015. "The Two Defaults Scenario for Stressing Credit Portfolio Loss Distributions," JRFM, MDPI, vol. 9(1), pages 1-18, December.
    4. Wei, Li & Yuan, Zhongyi, 2016. "The loss given default of a low-default portfolio with weak contagion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 113-123.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:19:y:2015:i:1:p:24-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.