IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v18y2014i2p315-342.html
   My bibliography  Save this article

Empirical Approach for Optimal Reinsurance Design

Author

Listed:
  • Ken Seng Tan
  • Chengguo Weng

Abstract

This article proposes a novel and practical approach of addressing optimal reinsurance via an empirical approach. This method formulates reinsurance models using the observed data directly and has advantages including (1) transformation of an infinite dimensional optimization problem to a finite dimension, (2) no required explicit distributional assumption on the underlying risk, and (3) many empirical-based reinsurance models can be solved efficiently using the second-order conic programming. This allows insurers to incorporate many desirable objective functions and constraints while still retaining the ease of obtaining optimal reinsurance strategies. Numerical examples, including applications to actual Danish fire loss data, are provided to highlight the efficiency and the practicality of the proposed empirical models. The stability and consistency of the empirical-based solutions are also analyzed numerically.

Suggested Citation

  • Ken Seng Tan & Chengguo Weng, 2014. "Empirical Approach for Optimal Reinsurance Design," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(2), pages 315-342, April.
  • Handle: RePEc:taf:uaajxx:v:18:y:2014:i:2:p:315-342
    DOI: 10.1080/10920277.2014.888008
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2014.888008
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2014.888008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Eling & Ruo Jia, 2017. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2014 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 20(1), pages 63-77, March.
    2. Nanjun ZHU & Yulin FENG, 2017. "Optimal Change-Loss Reinsurance Contract Design under Tail Risk Measures for Catastrophe Insurance," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 225-242.
    3. Yichun Chi & Zuo Quan Xu & Sheng Chao Zhuang, 2022. "Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 351-382, August.
    4. Guerra, M. & de Moura, A.B., 2021. "Reinsurance of multiple risks with generic dependence structures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 547-571.
    5. Asimit, Alexandru V. & Cheung, Ka Chun & Chong, Wing Fung & Hu, Junlei, 2020. "Pareto-optimal insurance contracts with premium budget and minimum charge constraints," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 17-27.
    6. Kong, Dezhou & Liu, Lishan & Wu, Yonghong, 2018. "Optimal reinsurance under risk and uncertainty on Orlicz hearts," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 108-116.
    7. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel & Heras, Antonio, 2022. "Risk transference constraints in optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 27-40.
    8. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel & Heras, Antonio, 2015. "Optimal reinsurance under risk and uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 61-74.
    9. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    10. Asimit, Alexandru V. & Hu, Junlei & Xie, Yuantao, 2019. "Optimal robust insurance with a finite uncertainty set," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 67-81.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:18:y:2014:i:2:p:315-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.