IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v17y2013i3p216-228.html
   My bibliography  Save this article

Model Selection and Averaging in Financial Risk Management

Author

Listed:
  • Brian Hartman
  • Chris Groendyke

Abstract

Simulated asset returns are used in many areas of actuarial science. For example, life insurers use them to price annuities, life insurance, and investment guarantees. The quality of those simulations has come under increased scrutiny during the current financial crisis. When simulating the asset price process, properly choosing which model or models to use, and accounting for the uncertainty in that choice, is essential. We investigate how best to choose a model from a flexible set of models. In our regime-switching models the individual regimes are not constrained to be from the same distributional family. Even with larger sample sizes, the standard model-selection methods (AIC, BIC, and DIC) incorrectly identify the models far too often. Rather than trying to identify the best model and limiting the simulation to a single distribution, we show that the simulations can be made more realistic by explicitly modeling the uncertainty in the model-selection process. Specifically, we consider a parallel model-selection method that provides the posterior probabilities of each model being the best, enabling model averaging and providing deeper insights into the relationships between the models. The value of the method is demonstrated through a simulation study, and the method is then applied to total return data from the S&P 500.

Suggested Citation

  • Brian Hartman & Chris Groendyke, 2013. "Model Selection and Averaging in Financial Risk Management," North American Actuarial Journal, Taylor & Francis Journals, vol. 17(3), pages 216-228.
  • Handle: RePEc:taf:uaajxx:v:17:y:2013:i:3:p:216-228
    DOI: 10.1080/10920277.2013.824374
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2013.824374
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2013.824374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam W. Kolkiewicz & Fangyuan Sally Lin, 2017. "Pricing Surrender Risk in Ratchet Equity-Index Annuities under Regime-Switching Lévy Processes," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(3), pages 433-457, July.
    2. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:17:y:2013:i:3:p:216-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.