IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v12y2008i4p413-425.html
   My bibliography  Save this article

The Time of Recovery and the Maximum Severity of Ruin in a Sparre Andersen Model

Author

Listed:
  • Shuanming Li

Abstract

Phase-type distributions are one of the most general classes of distributions permitting a Markovian interpretation. Sparre Andersen risk models with phase-type claim interarrival times or phase-type claims can be analyzed using Markovian techniques, and results can be expressed in compact matrix forms. Computations involved are readily programmable in practice.This paper studies some quantities associated with the first passage time and the time of ruin in a Sparre Andersen risk model with phase-type interclaim times. In an earlier discussion the present author obtained a matrix expression for the Laplace transform of the first time that the surplus process reaches a given target from the initial surplus. Using this result, we analyze (1) the Laplace transform of the recovery time after ruin, (2) the probability that the surplus attains a certain level before ruin, and (3) the distribution of the maximum severity of ruin. We also give a matrix expression for the expected discounted dividend payments prior to ruin for the Sparre Andersen model in the presence of a constant dividend barrier.

Suggested Citation

  • Shuanming Li, 2008. "The Time of Recovery and the Maximum Severity of Ruin in a Sparre Andersen Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(4), pages 413-425.
  • Handle: RePEc:taf:uaajxx:v:12:y:2008:i:4:p:413-425
    DOI: 10.1080/10920277.2008.10597533
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2008.10597533
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2008.10597533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lkabous, Mohamed Amine & Wang, Zijia, 2023. "On the area in the red of Lévy risk processes and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 257-278.
    2. Li, Shuanming & Lu, Yi, 2009. "The distribution of total dividend payments in a Sparre Andersen model," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1246-1251, May.
    3. Lanpeng Ji & Chunsheng Zhang, 2014. "A Duality Result for the Generalized Erlang Risk Model," Risks, MDPI, vol. 2(4), pages 1-11, November.
    4. Dickson, David C.M. & Li, Shuanming, 2013. "The distributions of the time to reach a given level and the duration of negative surplus in the Erlang(2) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 490-497.
    5. Jiang, Wuyuan & Yang, Zhaojun & Li, Xinping, 2012. "The discounted penalty function with multi-layer dividend strategy in the phase-type risk model," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1358-1366.
    6. Li, Shuanming & Ren, Jiandong, 2013. "The maximum severity of ruin in a perturbed risk process with Markovian arrivals," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 993-998.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:12:y:2008:i:4:p:413-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.