IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v11y2007i3p54-69.html
   My bibliography  Save this article

Predictive Modeling with Longitudinal Data

Author

Listed:
  • Marjorie Rosenberg
  • Edward Frees
  • Jiafeng Sun
  • Paul Johnson
  • Jim Robinson

Abstract

The recent development and availability of sophisticated computer software has facilitated the use of predictive modeling by actuaries and other financial analysts. Predictive modeling has been used for several applications in both the health and property and casualty sectors. Often these applications employ extensions of industry-specific techniques and do not make full use of information contained in the data. In contrast, we employ fundamental statistical methods for predictive modeling that can be used in a variety of disciplines. As demonstrated in this article, this methodology permits a disciplined approach to model building, including model development and validation phases. This article is intended as a tutorial for the analyst interested in using predictive modeling by making the process more transparent.This article illustrates the predictive modeling process using State of Wisconsin nursing home cost reports. We examine utilization of approximately 400 nursing homes from 1989 to 2001. Because the data vary both in the cross section and over time, we employ longitudinal models. This article demonstrates many of the common difficulties that analysts face in analyzing longitudinal health care data, as well as techniques for addressing these difficulties. We find that longitudinal methods, which use historical trend information, significantly outperform regression models that do not take advantage of historical trends.

Suggested Citation

  • Marjorie Rosenberg & Edward Frees & Jiafeng Sun & Paul Johnson & Jim Robinson, 2007. "Predictive Modeling with Longitudinal Data," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 54-69.
  • Handle: RePEc:taf:uaajxx:v:11:y:2007:i:3:p:54-69
    DOI: 10.1080/10920277.2007.10597466
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2007.10597466
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2007.10597466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tzougas, George & Karlis, Dimitris, 2020. "An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion," LSE Research Online Documents on Economics 104027, London School of Economics and Political Science, LSE Library.
    2. Tzougas, George & Jeong, Himchan, 2021. "An expectation-maximization algorithm for the exponential-generalized inverse Gaussian regression model with varying dispersion and shape for modelling the aggregate claim amount," LSE Research Online Documents on Economics 108210, London School of Economics and Political Science, LSE Library.
    3. George Tzougas & Himchan Jeong, 2021. "An Expectation-Maximization Algorithm for the Exponential-Generalized Inverse Gaussian Regression Model with Varying Dispersion and Shape for Modelling the Aggregate Claim Amount," Risks, MDPI, vol. 9(1), pages 1-17, January.
    4. Sun, Jiafeng & Frees, Edward W. & Rosenberg, Marjorie A., 2008. "Heavy-tailed longitudinal data modeling using copulas," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 817-830, April.
    5. Dornheim, Harald & Brazauskas, Vytaras, 2011. "Robust-efficient credibility models with heavy-tailed claims: A mixed linear models perspective," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 72-84, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:11:y:2007:i:3:p:54-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.