IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v11y2007i3p113-127.html
   My bibliography  Save this article

Using Aumann-Shapley Values to Allocate Insurance Risk

Author

Listed:
  • Michael Powers

Abstract

The problem of allocating responsibility for risk among members of a portfolio arises in a variety of financial and risk-management contexts. Examples are particularly prominent in the insurance sector, where actuaries have long sought methods for distributing capital (net worth) across a number of distinct exposure units or accounts according to their relative contributions to the total “risk” of an insurer’s portfolio. Although substantial work has been done on this problem, no satisfactory solution has yet been presented for the case of inhomogeneous loss distributions— that is, losses X ∼ FX|λ such that FX|tλ (X) ≠ FtX|λ (X) for some t > 0. The purpose of this article is to show that the value-assignment method of nonatomic cooperative games proposed in 1974 by Aumann and Shapley may be used to solve risk-allocation problems involving losses of this type. This technique is illustrated by providing analytical solutions for a useful class of multivariatenormal loss distributions.

Suggested Citation

  • Michael Powers, 2007. "Using Aumann-Shapley Values to Allocate Insurance Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 113-127.
  • Handle: RePEc:taf:uaajxx:v:11:y:2007:i:3:p:113-127
    DOI: 10.1080/10920277.2007.10597470
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2007.10597470
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2007.10597470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    2. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    3. Gero Junike & Hauke Stier & Marcus C. Christiansen, 2022. "Sequential decompositions at their limit," Papers 2212.06733, arXiv.org, revised Apr 2023.
    4. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    5. Seog S. Hun & Shin Sungwhee, 2009. "Comparison between Financial Theory and Cooperative Game Theory in Risk Capital Allocation," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 4(1), pages 1-18, November.
    6. Kim, Joseph H.T. & Hardy, Mary R., 2009. "A capital allocation based on a solvency exchange option," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 357-366, June.
    7. Daniel Bauer & George Zanjani, 2016. "The Marginal Cost of Risk, Risk Measures, and Capital Allocation," Management Science, INFORMS, vol. 62(5), pages 1431-1457, May.
    8. George Zanjani, 2010. "An Economic Approach to Capital Allocation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 523-549, September.
    9. van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
    10. Dorothea Diers & Martin Eling & Christian Kraus & Andreas Reuß, 2012. "Market-consistent embedded value in non-life insurance: how to measure it and why," Journal of Risk Finance, Emerald Group Publishing, vol. 13(4), pages 320-346, August.
    11. Stephen J. Mildenhall, 2017. "Actuarial Geometry," Risks, MDPI, vol. 5(2), pages 1-44, June.
    12. Christoph Frei, 2020. "A New Approach to Risk Attribution and Its Application in Credit Risk Analysis," Risks, MDPI, vol. 8(2), pages 1-13, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:11:y:2007:i:3:p:113-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.