IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v11y2007i2p119-134.html
   My bibliography  Save this article

On the Gerber-Shiu Discounted Penalty Function for the Ordinary Renewal Risk Model with Constant Interest

Author

Listed:
  • Rong Wu
  • Yuhua Lu
  • Ying Fang

Abstract

In this paper we study the Gerber-Shiu discounted penalty function for the ordinary renewal risk model modified by the constant interest on the surplus. Explicit answers are expressed by an infinite series, and a relational formula for some important joint density functions is derived. Applications of the results to the compound Poisson model are given. Finally, a lower bound and an upper bound for the ultimate ruin probability are derived.

Suggested Citation

  • Rong Wu & Yuhua Lu & Ying Fang, 2007. "On the Gerber-Shiu Discounted Penalty Function for the Ordinary Renewal Risk Model with Constant Interest," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 119-134.
  • Handle: RePEc:taf:uaajxx:v:11:y:2007:i:2:p:119-134
    DOI: 10.1080/10920277.2007.10597453
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2007.10597453
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2007.10597453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    2. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    3. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    4. Woo, Jae-Kyung & Cheung, Eric C.K., 2013. "A note on discounted compound renewal sums under dependency," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 170-179.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:11:y:2007:i:2:p:119-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.