IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v10y2006i4p269-279.html
   My bibliography  Save this article

Direct Derivation of Finite-Time Ruin Probabilities in the Discrete Risk Model with Exponential or Geometric Claims

Author

Listed:
  • Wai-Sum Chan
  • Lianzeng Zhang

Abstract

Growing research interest has been shown in finite-time ruin probabilities for discrete risk processes, even though the literature is not as extensive as for continuous-time models. The general approach is through the so-called Gerber-Shiu discounted penalty function, obtained for large families of claim severities and discrete risk models. This paper proposes another approach to deriving recursive and explicit formulas for finite-time ruin probabilities with exponential or geometric claim severities. The proposed method, as compared to the general Gerber-Shiu approach, is able to provide simpler derivation and straightforward expressions for these two special families of claims.

Suggested Citation

  • Wai-Sum Chan & Lianzeng Zhang, 2006. "Direct Derivation of Finite-Time Ruin Probabilities in the Discrete Risk Model with Exponential or Geometric Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(4), pages 269-279.
  • Handle: RePEc:taf:uaajxx:v:10:y:2006:i:4:p:269-279
    DOI: 10.1080/10920277.2006.10597426
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2006.10597426
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2006.10597426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekaterina Bulinskaya & Boris Shigida, 2021. "Discrete-Time Model of Company Capital Dynamics with Investment of a Certain Part of Surplus in a Non-Risky Asset for a Fixed Period," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 103-121, March.
    2. Ekaterina Bulinskaya & Julia Gusak & Anastasia Muromskaya, 2015. "Discrete-time Insurance Model with Capital Injections and Reinsurance," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 899-914, December.
    3. Landriault, David & Shi, Tianxiang & Willmot, Gordon E., 2011. "Joint densities involving the time to ruin in the Sparre Andersen risk model under exponential assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 371-379.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:10:y:2006:i:4:p:269-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.