IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v55y2024i11p2325-2336.html
   My bibliography  Save this article

Practical fixed-time neural control for MIMO non-strict feedback nonlinear systems: an adaptive neural network approach

Author

Listed:
  • Wenshan Bi
  • Shuai Sui
  • Shaocheng Tong
  • C. L. Philip Chen

Abstract

This paper studies the non-singular practical fixed-time neural adaptive control issues for multi-input and multi-output (MIMO) nonlinear systems with non-strict feedback form. Neural networks (NN) are used to estimate the unknown nonlinearities and deal with the problem of an algebraic loop. Under the framework of the backstepping control design, a practical fixed-time adaptive NN control method is developed by using the adding power integration technology. According to the Lyapunov function theory, it is proved that the closed-loop system is practical fixed-time stable, and the system can track the desired reference signal within a fixed time. Finally, the proposed practical fixed-time control method is applied to a multi-motor control platform, which proves the effectiveness of the control method.

Suggested Citation

  • Wenshan Bi & Shuai Sui & Shaocheng Tong & C. L. Philip Chen, 2024. "Practical fixed-time neural control for MIMO non-strict feedback nonlinear systems: an adaptive neural network approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 55(11), pages 2325-2336, August.
  • Handle: RePEc:taf:tsysxx:v:55:y:2024:i:11:p:2325-2336
    DOI: 10.1080/00207721.2024.2343740
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2024.2343740
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2024.2343740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:55:y:2024:i:11:p:2325-2336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.