IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v54y2023i6p1275-1288.html
   My bibliography  Save this article

Event-triggered adaptive decentralised control of interconnected nonlinear systems with Bouc-Wen hysteresis input

Author

Listed:
  • Yan Cheng
  • Ben Niu
  • Xudong Zhao
  • Guangdeng Zong
  • Adil M. Ahmad

Abstract

This article presents an event-based adaptive decentralised output feedback control scheme for interconnected systems with Bouc-Wen hysteresis and unmeasured system states. To reduce some unnecessary data transmissions, a novel dynamic threshold adjustable event-triggering mechanism is proposed. In contrast with the traditional static threshold event-triggering mechanism, communication efficiency is greatly enhanced. Then, a neural networks-based observer is constructed to address the problem of unmeasured states, and the dynamic surface control method is used to address the ‘explosion of complexity’ that comes up when traditional backstepping design processes are used. Meanwhile, the Nussbaum function is introduced to eliminate the effect of unknown hysteresis. By resorting to the Lyapunov stability theory, it can be verified that all signals in the close-loop system are uniformly ultimately bounded. Finally, a simulation example is given to verify the effectiveness of the developed control scheme.

Suggested Citation

  • Yan Cheng & Ben Niu & Xudong Zhao & Guangdeng Zong & Adil M. Ahmad, 2023. "Event-triggered adaptive decentralised control of interconnected nonlinear systems with Bouc-Wen hysteresis input," International Journal of Systems Science, Taylor & Francis Journals, vol. 54(6), pages 1275-1288, April.
  • Handle: RePEc:taf:tsysxx:v:54:y:2023:i:6:p:1275-1288
    DOI: 10.1080/00207721.2023.2169845
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2023.2169845
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2023.2169845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Shiyu & Zhao, Xudong & Wang, Huanqing & Xu, Ning, 2023. "Distributed consensus of heterogeneous switched nonlinear multiagent systems with input quantization and DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    2. Ye Wang & Zhaiaibai Ma & Mostafa M. Salah & Ahmed Shaker, 2023. "An Evolutionarily Based Type-2 Fuzzy-PID for Multi-Machine Power System Stabilization," Mathematics, MDPI, vol. 11(11), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:54:y:2023:i:6:p:1275-1288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.