Author
Listed:
- Amine Othmane
- Lothar Kiltz
- Joachim Rudolph
Abstract
The historical developments, parametrization, and numerous applications of algebraic numerical differentiation methods initiated by Fliess, Mboup, Join, and Sira-Ramírez are presented. These numerical non-asymptotic approximation approaches for higher-order derivatives of noisy signals are suited for real-time embedded systems. The different derivation approaches are reviewed according to their historical developments. Links to numerous established numerical differentiation algorithms like the Savitzky-Golay filters are discussed. Recent tuning approaches that are reviewed facilitate a parametrization for a good estimation accuracy without relying on trial-and-error approaches, which is essential for industrial applications. The use of these guidelines is demonstrated using two concrete examples: Identification of system parameters from noisy measurements and numerical inversion of the dynamics of analogue anti-aliasing filters. Moreover, an extensive literature survey with various applications of these methods by the control community in all engineering areas is presented. The problems solved include, but are not limited to, parameter estimation, state reconstruction, feedback control, fault diagnosis, anomaly detection, fault-tolerant control, and model-free control. A MATLAB and Python toolbox implementing all necessary functions for the design, analysis, and discretization of the filters is made available, for which a link is provided. Its use is demonstrated in a short appendix.
Suggested Citation
Amine Othmane & Lothar Kiltz & Joachim Rudolph, 2022.
"Survey on algebraic numerical differentiation: historical developments, parametrization, examples, and applications,"
International Journal of Systems Science, Taylor & Francis Journals, vol. 53(9), pages 1848-1887, July.
Handle:
RePEc:taf:tsysxx:v:53:y:2022:i:9:p:1848-1887
DOI: 10.1080/00207721.2022.2025948
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:53:y:2022:i:9:p:1848-1887. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.