IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v53y2022i2p313-324.html
   My bibliography  Save this article

Consensus in possibly unbalanced switching networks with relative-state-dependent noises

Author

Listed:
  • Bo Wang
  • Yu-Ping Tian
  • Zhimin Han

Abstract

This paper studies the consensus problem of discrete-time single-integrator multi-agent systems (MASs) with relative-state-dependent (RSD) noises in possibly unbalanced switching networks. By using a time-varying quadratic Lyapunov function, we prove that the mean square and almost sure consensus of the single-integrator MASs with RSD noises can always be achieved by adopting a constant gain protocol if the switching network is uniformly strongly connected. We also give the statistic property of the convergent random variable with respect to the initial state of the system. Simulation results are given to verify the correctness of the consensus conclusion.

Suggested Citation

  • Bo Wang & Yu-Ping Tian & Zhimin Han, 2022. "Consensus in possibly unbalanced switching networks with relative-state-dependent noises," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(2), pages 313-324, January.
  • Handle: RePEc:taf:tsysxx:v:53:y:2022:i:2:p:313-324
    DOI: 10.1080/00207721.2021.1954718
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2021.1954718
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2021.1954718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:53:y:2022:i:2:p:313-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.