IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v51y2020i16p3425-3435.html
   My bibliography  Save this article

Predefined-time integral sliding mode control of second-order systems

Author

Listed:
  • Juan Diego Sánchez-Torres
  • Aldo Jonathan Muñoz-Vázquez
  • Michael Defoort
  • Rodrigo Aldana-López
  • David Gómez-Gutiérrez

Abstract

This manuscript introduces the design of a controller that ensures predefined-time convergence for a class of second-order systems. In contrast to finite- and fixed-time controllers, predefined-time schemes allow to prescribe a bound for the convergence time as a control parameter. First, a predefined-time integral sliding mode controller allows rejecting unknown but bounded matched disturbances. Then, the system dynamics evolve free of the effect of disturbances during the integral sliding motion. Finally, an ideal controller enforces convergence also in predefined-time. A Lyapunov-like characterisation for predefined-time stability is conducted, and numerical results are provided to illustrate the validity of the proposed technique.

Suggested Citation

  • Juan Diego Sánchez-Torres & Aldo Jonathan Muñoz-Vázquez & Michael Defoort & Rodrigo Aldana-López & David Gómez-Gutiérrez, 2020. "Predefined-time integral sliding mode control of second-order systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(16), pages 3425-3435, December.
  • Handle: RePEc:taf:tsysxx:v:51:y:2020:i:16:p:3425-3435
    DOI: 10.1080/00207721.2020.1815893
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2020.1815893
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2020.1815893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamal Elyaalaoui & Moussa Labbadi & Sahbi Boubaker & Souad Kamel & Faisal S. Alsubaei, 2023. "On Novel Fractional-Order Trajectory Tracking Control of Quadrotors: A Predefined-Time Guarantee Performance Approach," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    2. Pu, Hao & Li, Fengjun, 2023. "Fixed/predefined-time synchronization of complex-valued discontinuous delayed neural networks via non-chattering and saturation control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:51:y:2020:i:16:p:3425-3435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.