IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v50y2019i9p1742-1756.html
   My bibliography  Save this article

Global asymptotic stability analysis for neutral-type complex-valued neural networks with random time-varying delays

Author

Listed:
  • R. Sriraman
  • R. Samidurai

Abstract

This paper investigates the global asymptotic stability problem for a class of neutral-type complex-valued neural networks with random time-varying delays. By introducing a stochastic variable with Bernoulli distribution, the information of time-varying delay is assumed to be random time-varying delays. By constructing an appropriate Lyapunov–Krasovskii functional and employing inequality technique, several sufficient conditions are obtained to ensure the global asymptotically stability of equilibrium point for the considered neural networks. The obtained stability criterion is expressed in terms of complex-valued linear matrix inequalities, which can be simply solved by effective YALMIP toolbox in MATLAB. Finally, three numerical examples are given to demonstrate the efficiency of the proposed main results.

Suggested Citation

  • R. Sriraman & R. Samidurai, 2019. "Global asymptotic stability analysis for neutral-type complex-valued neural networks with random time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(9), pages 1742-1756, July.
  • Handle: RePEc:taf:tsysxx:v:50:y:2019:i:9:p:1742-1756
    DOI: 10.1080/00207721.2019.1623340
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2019.1623340
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2019.1623340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    2. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Global Stability Analysis of Fractional-Order Quaternion-Valued Bidirectional Associative Memory Neural Networks," Mathematics, MDPI, vol. 8(5), pages 1-27, May.
    3. Cao, Yang & Sriraman, R. & Shyamsundarraj, N. & Samidurai, R., 2020. "Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 207-220.
    4. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:50:y:2019:i:9:p:1742-1756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.