IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v50y2019i5p1039-1051.html
   My bibliography  Save this article

Fractional order predictive sliding-mode control for a class of nonlinear input-delay systems: singular and non-singular approach

Author

Listed:
  • Ladan Khoshnevisan
  • Xinzhi Liu

Abstract

Nonlinear models of physical systems usually suffer from input delay and external disturbances. Moreover, when a delayed state is in the input signal gain, it can be non-singular or singular. So, designing a robust controller in a nonlinear system with input and state delay, suitable for non-singular and singular input signal gain, is imperative. The main contribution of our study is to design a new state feedback fractional order predictive sliding mode control (FOPSMC) procedure which not only guarantees the stability of a nonlinear system with known constant input and state delay but also controls the output signal to the desired value. Firstly, a predictor is designed for the system to achieve an input-delay-free one. Then, a state feedback FOPSMC is proposed based on a fractional order sliding signal for a nonlinear system with non-singular control gain. Also, a state feedback FOPSMC and a fractional order sliding mode observer (FOSMO) for the virtual disturbance are designed for singular control gain situation. It is proved analytically, through the Lyapunov stability criteria, that both control procedures can stabilise the system and can control the output signal to the desired value, effectively. Finally, the simulation results verify the effectiveness of the analytical achievements.

Suggested Citation

  • Ladan Khoshnevisan & Xinzhi Liu, 2019. "Fractional order predictive sliding-mode control for a class of nonlinear input-delay systems: singular and non-singular approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(5), pages 1039-1051, April.
  • Handle: RePEc:taf:tsysxx:v:50:y:2019:i:5:p:1039-1051
    DOI: 10.1080/00207721.2019.1587030
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2019.1587030
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2019.1587030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianing Cao & Hua Chen, 2023. "Mathematical Model for Fault Handling of Singular Nonlinear Time-Varying Delay Systems Based on T-S Fuzzy Model," Mathematics, MDPI, vol. 11(11), pages 1-13, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:50:y:2019:i:5:p:1039-1051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.