IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v50y2019i14p2663-2672.html
   My bibliography  Save this article

Stability analysis of systems via a new double free-matrix-based integral inequality with interval time-varying delay

Author

Listed:
  • Wenbin Chen
  • Fang Gao

Abstract

This paper investigates the problem of delay-dependent stability analysis for systems with interval time-varying delay. By means of a new double free-matrix-based integral inequality and augmented Lyapunov–Krasovskii functionals containing as much information of time-varying delay as possible, a new stability criterion for systems is established. Firstly, by a double integral term two-step estimation approach and combined with single free-matrix-based integral inequalities, a stability criteria is presented. Then, compared with the double integral term two-step estimation approach, the proposed new double free-matrix-based integral inequality with more related time delays has potential to lead to a criterion with less conservatism. Finally, the validity of the presented method is demonstrated by two numerical examples.

Suggested Citation

  • Wenbin Chen & Fang Gao, 2019. "Stability analysis of systems via a new double free-matrix-based integral inequality with interval time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(14), pages 2663-2672, October.
  • Handle: RePEc:taf:tsysxx:v:50:y:2019:i:14:p:2663-2672
    DOI: 10.1080/00207721.2019.1672118
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2019.1672118
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2019.1672118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shenping Xiao & Jin Yu & Simon X. Yang & Yongfeng Qiu, 2022. "Stability Analysis for Time-Delay Systems via a New Negativity Condition on Quadratic Functions," Mathematics, MDPI, vol. 10(17), pages 1-9, August.
    2. Chen, Wenbin & Gao, Fang & She, Jinhua & Xia, Weifeng, 2020. "Further results on delay-dependent stability for neutral singular systems via state decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:50:y:2019:i:14:p:2663-2672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.