IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v49y2018i15p3108-3116.html
   My bibliography  Save this article

Robust limit cycle control in a class of nonlinear discrete-time systems

Author

Listed:
  • Ali Reza Hakimi
  • Tahereh Binazadeh

Abstract

This paper studies generation of robust periodic solutions in a class of nonlinear discrete-time system. The sustained oscillations, with the desired frequency and amplitude, are achieved through the creation of the appropriate elliptic limit cycle in the phase plane of the uncertain closed-loop discrete-time system. In the first step, the nominal control law is designed to enforce the trajectories of the nominal closed-loop system to converge to the desired limit cycle. Next, considering uncertain terms, an additional robustifying term is designed. This term is added to the nominal controller to sustain the desirable stable oscillations in the presence of uncertain terms. The resulted robust controller brings the trajectories of the uncertain closed-loop discrete-time system to a boundary layer (with adjustable width) around the desired limit cycle. Moreover, the domain of attraction of the limit cycle and also the ultimate boundary layer around it are calculated via the Lyapunov analysis. Additionally, in order to verify the applicability of the proposed method, it is implemented on the discretised model of a spring–damper system. Computer simulations confirm the theoretical results in generating robust stable oscillations.

Suggested Citation

  • Ali Reza Hakimi & Tahereh Binazadeh, 2018. "Robust limit cycle control in a class of nonlinear discrete-time systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(15), pages 3108-3116, November.
  • Handle: RePEc:taf:tsysxx:v:49:y:2018:i:15:p:3108-3116
    DOI: 10.1080/00207721.2018.1533599
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2018.1533599
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2018.1533599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azhdari, Meysam & Binazadeh, Tahereh, 2022. "A novel adaptive SMC strategy for sustained oscillations in nonlinear sandwich systems based on stable limit cycle approach," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Hakimi, A.R. & Azhdari, M. & Binazadeh, T., 2021. "Limit cycle oscillator in nonlinear systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:49:y:2018:i:15:p:3108-3116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.