IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v47y2016i7p1514-1532.html
   My bibliography  Save this article

Fault detection for a class of uncertain nonlinear Markovian jump stochastic systems with mode-dependent time delays and sensor saturation

Author

Listed:
  • Guangming Zhuang
  • Yongmin Li
  • Ze Li

Abstract

This paper considers the problem of robust H∞ fault detection for a class of uncertain nonlinear Markovian jump stochastic systems with mode-dependent time delays and sensor saturation. We aim to design a linear mode-dependent H∞ fault detection filter that ensures, the fault detection system is not only stochastically asymptotically stable in the large, but also satisfies a prescribed H∞-norm level for all admissible uncertainties. By using the Lyapunov stability theory and generalised Itô formula, some novel delay-dependent sufficient conditions in terms of linear matrix inequality are proposed to guarantee the existence of the desired fault detection filter. Explicit expression of the desired mode-dependent linear filter parameters is characterised by matrix decomposition, congruence transformation and convex optimisation technique. Sector condition method is utilised to deal with sensor saturation, a definite relation of sector condition parameters with fault detection system robustness against disturbances and sensitivity to faults is put forward, and weighting fault signal approach is employed to improve the performance of the fault detection system. A simulation example and an industrial nonisothermal continuous stirred tank reactor system are utilised to verify the effectiveness and usefulness of the proposed method.

Suggested Citation

  • Guangming Zhuang & Yongmin Li & Ze Li, 2016. "Fault detection for a class of uncertain nonlinear Markovian jump stochastic systems with mode-dependent time delays and sensor saturation," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(7), pages 1514-1532, May.
  • Handle: RePEc:taf:tsysxx:v:47:y:2016:i:7:p:1514-1532
    DOI: 10.1080/00207721.2014.938786
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2014.938786
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2014.938786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Yuqian & Zhuang, Guangming & Sun, Wei & Zhao, Junsheng & Chu, Yuming, 2021. "Resilient H∞ dynamic output feedback controller design for USJSs with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 395(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:47:y:2016:i:7:p:1514-1532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.