IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i6p1020-1035.html
   My bibliography  Save this article

Assessment of spare reliability for multi-state computer networks within tolerable packet unreliability

Author

Listed:
  • Yi-Kuei Lin
  • Cheng-Fu Huang

Abstract

From a quality of service viewpoint, the transmission packet unreliability and transmission time are both critical performance indicators in a computer system when assessing the Internet quality for supervisors and customers. A computer system is usually modelled as a network topology where each branch denotes a transmission medium and each vertex represents a station of servers. Almost every branch has multiple capacities/states due to failure, partial failure, maintenance, etc. This type of network is known as a multi-state computer network (MSCN). This paper proposes an efficient algorithm that computes the system reliability, i.e., the probability that a specified amount of data can be sent through k (k ≥ 2) disjoint minimal paths within both the tolerable packet unreliability and time threshold. Furthermore, two routing schemes are established in advance to indicate the main and spare minimal paths to increase the system reliability (referred to as spare reliability). Thus, the spare reliability can be readily computed according to the routing scheme.

Suggested Citation

  • Yi-Kuei Lin & Cheng-Fu Huang, 2015. "Assessment of spare reliability for multi-state computer networks within tolerable packet unreliability," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(6), pages 1020-1035, April.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:6:p:1020-1035
    DOI: 10.1080/00207721.2013.807383
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.807383
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.807383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Kuei Lin & Cheng-Fu Huang & Chin-Chia Chang, 2022. "Reliability of spare routing via intersectional minimal paths within budget and time constraints by simulation," Annals of Operations Research, Springer, vol. 312(1), pages 345-368, May.
    2. Gao, Hongda & Tu, Tengfei & Qiu, Qingan, 2024. "Reliability analysis for a generalized sparse connection multi-state consecutive-k-out-of-n linear system," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:6:p:1020-1035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.