IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i3p535-545.html
   My bibliography  Save this article

Warranty optimisation based on the prediction of costs to the manufacturer using neural network model and Monte Carlo simulation

Author

Listed:
  • Dragan D. Stamenkovic
  • Vladimir M. Popovic

Abstract

Warranty is a powerful marketing tool, but it always involves additional costs to the manufacturer. In order to reduce these costs and make use of warranty's marketing potential, the manufacturer needs to master the techniques for warranty cost prediction according to the reliability characteristics of the product. In this paper a combination free replacement and pro rata warranty policy is analysed as warranty model for one type of light bulbs. Since operating conditions have a great impact on product reliability, they need to be considered in such analysis. A neural network model is used to predict light bulb reliability characteristics based on the data from the tests of light bulbs in various operating conditions. Compared with a linear regression model used in the literature for similar tasks, the neural network model proved to be a more accurate method for such prediction. Reliability parameters obtained in this way are later used in Monte Carlo simulation for the prediction of times to failure needed for warranty cost calculation. The results of the analysis make possible for the manufacturer to choose the optimal warranty policy based on expected product operating conditions. In such a way, the manufacturer can lower the costs and increase the profit.

Suggested Citation

  • Dragan D. Stamenkovic & Vladimir M. Popovic, 2015. "Warranty optimisation based on the prediction of costs to the manufacturer using neural network model and Monte Carlo simulation," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 535-545, February.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:3:p:535-545
    DOI: 10.1080/00207721.2013.792972
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.792972
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.792972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shokouhyar, Sajjad & Ahmadi, Sadra & Ashrafzadeh, Mahdi, 2021. "Promoting a novel method for warranty claim prediction based on social network data," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:3:p:535-545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.