IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i1p152-158.html
   My bibliography  Save this article

Crew exploration vehicle (CEV) attitude control using a neural–immunology/memory network

Author

Listed:
  • Liguo Weng
  • Min Xia
  • Wei Wang
  • Qingshan Liu

Abstract

This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural–immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.

Suggested Citation

  • Liguo Weng & Min Xia & Wei Wang & Qingshan Liu, 2015. "Crew exploration vehicle (CEV) attitude control using a neural–immunology/memory network," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(1), pages 152-158, January.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:1:p:152-158
    DOI: 10.1080/00207721.2013.775389
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.775389
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.775389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M.K. Singh & D.R. Parhi, 2011. "Path optimisation of a mobile robot using an artificial neural network controller," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(1), pages 107-120.
    2. Wen Yu & Kang Li & Xiaoou Li, 2011. "Automated nonlinear system modelling with multiple neural networks," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(10), pages 1683-1695.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Xiao & Yunong Zhang, 2016. "Dynamic design, numerical solution and effective verification of acceleration-level obstacle-avoidance scheme for robot manipulators," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(4), pages 932-945, March.
    2. Gabriel G. R. de Castro & Guido S. Berger & Alvaro Cantieri & Marco Teixeira & José Lima & Ana I. Pereira & Milena F. Pinto, 2023. "Adaptive Path Planning for Fusing Rapidly Exploring Random Trees and Deep Reinforcement Learning in an Agriculture Dynamic Environment UAVs," Agriculture, MDPI, vol. 13(2), pages 1-25, January.
    3. Kuangrong Hao & Chongbin Guo & Yongsheng Ding, 2014. "Physiological hemostasis based intelligent integrated cooperative controller for precise fault-tolerant control of redundant parallel manipulator," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(10), pages 2072-2087, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:1:p:152-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.