IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i16p2955-2972.html
   My bibliography  Save this article

A robust -tracking design for uncertain Takagi–Sugeno fuzzy systems with unknown premise variables using descriptor redundancy approach

Author

Listed:
  • Mohammad Hassan Asemani
  • Vahid Johari Majd

Abstract

This paper addresses a robust H∞ fuzzy observer-based tracking design problem for uncertain Takagi–Sugeno fuzzy systems with external disturbances. To have a practical observer-based controller, the premise variables of the system are assumed to be not measurable in general, which leads to a more complex design process. The tracker is synthesised based on a fuzzy Lyapunov function approach and non-parallel distributed compensation (non-PDC) scheme. Using the descriptor redundancy approach, the robust stability conditions are derived in the form of strict linear matrix inequalities (LMIs) even in the presence of uncertainties in the system, input, and output matrices simultaneously. Numerical simulations are provided to show the effectiveness of the proposed method.

Suggested Citation

  • Mohammad Hassan Asemani & Vahid Johari Majd, 2015. "A robust -tracking design for uncertain Takagi–Sugeno fuzzy systems with unknown premise variables using descriptor redundancy approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(16), pages 2955-2972, December.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:16:p:2955-2972
    DOI: 10.1080/00207721.2014.884252
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2014.884252
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2014.884252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flávio Faria & Geraldo Silva & Vilma Oliveira, 2013. "Reducing the conservatism of LMI-based stabilisation conditions for TS fuzzy systems using fuzzy Lyapunov functions," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(10), pages 1956-1969.
    2. Xiao-Heng Chang & Guang-Hong Yang & Haibo Wang, 2011. "Observer-based -control for discrete-time T–S fuzzy systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(10), pages 1801-1809.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiguo Yan & Zhiwei Zhang & Guolin Hu & Baolong Zhu, 2022. "Observer-Based Finite-Time H ∞ Control of the Blood Gases System in Extracorporeal Circulation via the T-S Fuzzy Model," Mathematics, MDPI, vol. 10(12), pages 1-15, June.
    2. Guolin Hu & Jian Zhang & Zhiguo Yan, 2022. "Local H ∞ Control for Continuous-Time T-S Fuzzy Systems via Generalized Non-Quadratic Lyapunov Functions," Mathematics, MDPI, vol. 10(19), pages 1-13, September.
    3. Sohaira Ahmad & Muhammad Rehan & Anas Ibrar & Muhammad Umair Ali & Amad Zafar & Seong Han Kim, 2024. "Novel Robust Estimation-Based Control of One-Sided Lipschitz Nonlinear Systems Subject to Output and Input Delays," Mathematics, MDPI, vol. 12(9), pages 1-30, April.
    4. Thanh Binh Nguyen & Hyoung-Kyu Song, 2022. "Further Results on Robust Output-Feedback Dissipative Control of Markovian Jump Fuzzy Systems with Model Uncertainties," Mathematics, MDPI, vol. 10(19), pages 1-16, October.
    5. R. Rakkiyappan & A. Chandrasekar & S. Lakshmanan, 2016. "Stochastic sampled data robust stabilisation of T-S fuzzy neutral systems with randomly occurring uncertainties and time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2247-2263, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:16:p:2955-2972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.