IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i14p2547-2559.html
   My bibliography  Save this article

Adaptive tracking control for switched systems based on an average dwell-time method

Author

Listed:
  • Caiyun Wu
  • Jun Zhao

Abstract

This paper investigates the H∞ state tracking model reference adaptive control (MRAC) problem for a class of switched systems using an average dwell-time method. First, a stability criterion is established for a switched reference model. Then, an adaptive controller is designed and the state tracking control problem is converted into the stability analysis. The global practical stability of the error switched system can be guaranteed under a class of switching signals characterised by an average dwell time. Consequently, sufficient conditions for the solvability of the H∞ state tracking MRAC problem are derived. An example of highly manoeuvrable aircraft technology vehicle is given to demonstrate the feasibility and effectiveness of the proposed design method.

Suggested Citation

  • Caiyun Wu & Jun Zhao, 2015. "Adaptive tracking control for switched systems based on an average dwell-time method," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2547-2559, October.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:14:p:2547-2559
    DOI: 10.1080/00207721.2013.871371
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.871371
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.871371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sader, Malika & Chen, Zengqiang & Liu, Zhongxin & Deng, Chao, 2021. "Distributed robust fault-tolerant consensus control for a class of nonlinear multi-agent systems with intermittent communications," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    2. Hou, Linlin & Li, Yao & Luo, Wende & Sun, Haibin, 2022. "Adaptive tracking control of switched cyber-physical systems with cyberattacks," Applied Mathematics and Computation, Elsevier, vol. 415(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:14:p:2547-2559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.