IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i13p2407-2420.html
   My bibliography  Save this article

An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms

Author

Listed:
  • Rui Wang
  • Maszatul M. Mansor
  • Robin C. Purshouse
  • Peter J. Fleming

Abstract

Many-objective optimisation problems remain challenging for many state-of-the-art multi-objective evolutionary algorithms. Preference-inspired co-evolutionary algorithms (PICEAs) which co-evolve the usual population of candidate solutions with a family of decision-maker preferences during the search have been demonstrated to be effective on such problems. However, it is unknown whether PICEAs are robust with respect to the parameter settings. This study aims to address this question. First, a global sensitivity analysis method – the Sobol’ variance decomposition method – is employed to determine the relative importance of the parameters controlling the performance of PICEAs. Experimental results show that the performance of PICEAs is controlled for the most part by the number of function evaluations. Next, we investigate the effect of key parameters identified from the Sobol’ test and the genetic operators employed in PICEAs. Experimental results show improved performance of the PICEAs as more preferences are co-evolved. Additionally, some suggestions for genetic operator settings are provided for non-expert users.

Suggested Citation

  • Rui Wang & Maszatul M. Mansor & Robin C. Purshouse & Peter J. Fleming, 2015. "An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(13), pages 2407-2420, October.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:13:p:2407-2420
    DOI: 10.1080/00207721.2015.1008600
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2015.1008600
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2015.1008600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Rui & Li, Guozheng & Ming, Mengjun & Wu, Guohua & Wang, Ling, 2017. "An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system," Energy, Elsevier, vol. 141(C), pages 2288-2299.
    2. Wang, Rui & Xiong, Jian & He, Min-fan & Gao, Liang & Wang, Ling, 2020. "Multi-objective optimal design of hybrid renewable energy system under multiple scenarios," Renewable Energy, Elsevier, vol. 151(C), pages 226-237.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:13:p:2407-2420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.